Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:134
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [41] Research on Probability Density Modeling Method of Wind Power Fluctuation Based on Nonparametric Kernel Density Estimation
    Chen, Daojun
    Guo, Hu
    Zuo, Jian
    Cui, Ting
    Shen, Yangwu
    Zhang, Lei
    2018 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT GREEN BUILDING AND SMART GRID (IGBSG 2018), 2018,
  • [42] Probability prediction of wind power based on QR-NFGLSTM and kernel density estimation
    Wang, Xiaodong
    Ju, Bangguo
    Liu, Yingming
    Zang, Tonglin
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (02): : 479 - 485
  • [43] A stat istical model for wind power forecast error based on kernel density estimation
    Liu, Liyang, 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (08):
  • [44] Kernel Density Estimation and Local Time
    Tudor, Ciprian A.
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 141 - 150
  • [45] Wind speed forecasting based on Quantile Regression Minimal Gated Memory Network and Kernel Density Estimation
    Zhang, Zhendong
    Qin, Hui
    Liu, Yongqi
    Yao, Liqiang
    Yu, Xiang
    Lu, Jiantao
    Jiang, Zhiqiang
    Feng, Zhongkai
    ENERGY CONVERSION AND MANAGEMENT, 2019, 196 : 1395 - 1409
  • [46] Wind-fire joint optimal dispatching based on adaptive diffusion Gaussian kernel density wind farm output power forecast error estimation
    Du Y.
    Xu T.
    Li Y.
    Wang Y.
    Deng X.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (21): : 11 - 21
  • [47] A Wind Power Probabilistic Model Using the Reflection Method and Multi-Kernel Function Kernel Density Estimation
    Choi, Juseung
    Eom, Hoyong
    Baek, Seung-Mook
    ENERGIES, 2022, 15 (24)
  • [48] Time-adaptive quantile-copula for wind power probabilistic forecasting
    Bessa, Ricardo J.
    Miranda, V.
    Botterud, A.
    Zhou, Z.
    Wang, J.
    RENEWABLE ENERGY, 2012, 40 (01) : 29 - 39
  • [49] Conditional kernel density estimation for some incomplete data models
    Yan, Ting
    Qu, Liangqiang
    Li, Zhaohai
    Yuan, Ao
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 1299 - 1329
  • [50] Kernel estimation of conditional density with truncated, censored and dependent data
    Liang, Han-Ying
    Liu, Ai-Ai
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 120 : 40 - 58