Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:134
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [21] Bandwidth selection for kernel conditional density estimation
    Bashtannyk, DM
    Hyndman, RJ
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (03) : 279 - 298
  • [22] Short-term probabilistic forecasting for regional wind power using distance-weighted kernel density estimation
    Wang, Zhao
    Wang, Weisheng
    Liu, Chun
    Wang, Bo
    Feng, Shuanglei
    IET RENEWABLE POWER GENERATION, 2018, 12 (15) : 1725 - 1732
  • [23] Regional wind power probabilistic forecasting based on an improved kernel density estimation, regular vine copulas, and ensemble learning
    Dong, Weichao
    Sun, Hexu
    Tan, Jianxin
    Li, Zheng
    Zhang, Jingxuan
    Yang, Huifang
    ENERGY, 2022, 238
  • [24] Photovoltaic power interval forecasting method based on kernel density estimation algorithm
    Shi, Min
    Yin, Rui
    Wang, Yifeng
    Li, Dengxuan
    Han, Yutong
    Yin, Wansi
    2020 INTERNATIONAL CONFERENCE ON GREEN DEVELOPMENT AND ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 615
  • [25] A Novel Ensemble Algorithm for Solar Power Forecasting Based on Kernel Density Estimation
    Lotfi, Mohamed
    Javadi, Mohammad
    Osorio, Gerardo J.
    Monteiro, Claudio
    Catalao, Joao P. S.
    ENERGIES, 2020, 13 (01)
  • [26] Kernel density estimation in adaptive tracking
    Bercu, Bernard
    Portier, Bruno
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3441 - 3445
  • [27] Adaptive kernel density estimation using beta kernel
    Yin, Xun-Fu
    Hao, Zhi-Feng
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3293 - +
  • [28] Infectious disease prediction with kernel conditional density estimation
    Ray, Evan L.
    Sakrejda, Krzysztof
    Lauer, Stephen A.
    Johansson, Michael A.
    Reich, Nicholas G.
    STATISTICS IN MEDICINE, 2017, 36 (30) : 4908 - 4929
  • [29] Wind Power Prediction Based on LSTM Networks and Nonparametric Kernel Density Estimation
    Zhou, Bowen
    Ma, Xiangjin
    Luo, Yanhong
    Yang, Dongsheng
    IEEE ACCESS, 2019, 7 : 165279 - 165292
  • [30] Shared kernel models for class conditional density estimation
    Titsias, MK
    Likas, AC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (05): : 987 - 997