Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:134
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [31] Kernel estimation of the conditional density under a censorship model
    Aouicha, Lamia
    Messaci, Fatiha
    STATISTICS & PROBABILITY LETTERS, 2019, 145 : 173 - 180
  • [32] An Integrated Wind Power Forecasting Methodology: Interval Estimation Of Wind Speed, Operation Probability Of Wind Turbine, And Conditional Expected Wind Power Output Of A Wind Farm
    Liu, Heping
    Shi, Jing
    Erdem, Ergin
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2013, 10 (02) : 151 - 176
  • [33] Probabilistic Optimal Power Flow Considering Correlation and Time Series Based on Adaptive Diffusion Kernel Density Estimation
    Li, Guoqing
    Lu, Weihua
    Bian, Jing
    Sun, Yinfeng
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (05): : 1655 - 1663
  • [34] A novel probabilistic wind speed prediction approach using real time refined variational model decomposition and conditional kernel density estimation
    Jiang, Yan
    Huang, Guoqing
    Yang, Qingshan
    Yan, Zhitao
    Zhang, Chaofan
    ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 758 - 773
  • [35] Adaptive pointwise estimation of conditional density function
    Bertin, Karine
    Lacour, Claire
    Rivoirard, Vincent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 939 - 980
  • [36] Adaptive Online Kernel Density Estimation Method
    Deng Q.-L.
    Qiu T.-Y.
    Shen F.-R.
    Zhao J.-X.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (04): : 1173 - 1188
  • [37] Wind Speed Probability Distribution Based on Adaptive Bandwidth Kernel Density Estimation Model for Wind Farm Application
    Chau, Tin Trung
    Nguyen, Thu Thi Hoai
    Nguyen, Linh
    Do, Ton Duc
    WIND ENERGY, 2025, 28 (02)
  • [38] Multivariate locally adaptive kernel density estimation
    Gao, Jia-Xing
    Jiang, Da-Quan
    Qian, Min-Ping
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4431 - 4444
  • [39] An Adaptive Kernel Density Estimation for Motion Detection
    Xu, Dongbin
    Liu, Changping
    Huang, Lei
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 613 - 617
  • [40] TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time Dynamic Density Estimation
    Wang, Yinsong
    Ding, Yu
    Shahrampour, Shahin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 13831 - 13843