Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting

被引:134
|
作者
Bessa, Ricardo J. [1 ,2 ]
Miranda, Vladimiro [1 ,2 ]
Botterud, Audun [3 ]
Wang, Jianhui [3 ]
Constantinescu, Emil M. [4 ]
机构
[1] Univ Porto, INESC TEC INESC Technol & Sci, P-4200465 Oporto, Portugal
[2] Univ Porto, FEUP Fac Engn, P-4200465 Oporto, Portugal
[3] Argonne Natl Lab, CEEESA, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
关键词
Decision-making; density estimation; kernel; time-adaptive; uncertainty; wind power forecasting; PROBABILISTIC FORECASTS;
D O I
10.1109/TSTE.2012.2200302
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper reports the application of a new kernel density estimation model based on the Nadaraya-Watson estimator, for the problem of wind power uncertainty forecasting. The new model is described, including the use of kernels specific to the wind power problem. A novel time-adaptive approach is presented. The quality of the new model is benchmarked against a splines quantile regression model currently in use in the industry. The case studies refer to two distinct wind farms in the United States and show that the new model produces better results, evaluated with suitable quality metrics such as calibration, sharpness, and skill score.
引用
收藏
页码:660 / 669
页数:10
相关论文
共 50 条
  • [1] Using Conditional Kernel Density Estimation for Wind Power Density Forecasting
    Jeon, Jooyoung
    Taylor, James W.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 66 - 79
  • [2] Forecasting wind power quantiles using conditional kernel estimation
    Taylor, James W.
    Jeon, Jooyoung
    RENEWABLE ENERGY, 2015, 80 : 370 - 379
  • [3] Adaptive kernel conditional density estimation
    Zhao, Wenjun
    Tabak, Esteban G.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2025, 14 (01)
  • [4] Probability Density Forecasting of Wind Power Based on Transformer Network with Expectile Regression and Kernel Density Estimation
    Xiao, Haoyi
    He, Xiaoxia
    Li, Chunli
    ELECTRONICS, 2023, 12 (05)
  • [5] Probability density forecasting of wind power using quantile regression neural network and kernel density estimation
    He, Yaoyao
    Li, Haiyan
    ENERGY CONVERSION AND MANAGEMENT, 2018, 164 : 374 - 384
  • [6] Ultrashort-term Adaptive Probabilistic Forecasting of Wind Power Based on Multi-band Width Kernel Density Estimation
    Wang, Sen
    Sun, Yonghui
    Hou, Dongchen
    Zhou, Yan
    Zhang, Wenjie
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (07): : 3070 - 3079
  • [7] Short-Term Load Forecasting Based on Kernel Conditional Density Estimation
    Dudek, Grzegorz
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (08): : 164 - 167
  • [8] Forecasting electricity smart meter data using conditional kernel density estimation
    Arora, Siddharth
    Taylor, James W.
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2016, 59 : 47 - 59
  • [9] Household electricity demand forecasting using adaptive conditional density estimation
    Amara, Fatima
    Agbossou, Kodjo
    Dube, Yves
    Kelouwani, Sousso
    Cardenas, Alben
    Bouchard, Jonathan
    ENERGY AND BUILDINGS, 2017, 156 : 271 - 280
  • [10] Auto-regressive Conditional Density Model for Wind Power Forecasting
    Chen, Hao
    Li, Fangxing
    Wang, Yurong
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,