Space-efficient algorithms for computing minimal/shortest unique substrings

被引:0
|
作者
Mieno, Takuya [1 ]
Koppl, Dominik [1 ,2 ]
Nakashima, Yuto [1 ]
Inenaga, Shunsuke [1 ,3 ]
Bannai, Hideo [1 ,4 ]
Takeda, Masayuki [1 ]
机构
[1] Kyushu Univ, Dept Informat, Fukuoka, Japan
[2] Japan Soc Promot Sci, Tokyo, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Saitama, Japan
[4] Tokyo Med & Dent Univ, Tokyo, Japan
关键词
String processing algorithm; Shortest unique substring; Minimal unique substring; Compact data structure; SUCCINCT REPRESENTATIONS; SUFFIX ARRAYS; SHORTEST;
D O I
10.1016/j.tcs.2020.09.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a string T of lengthn, a substring u = T[i.. j] of T is called a shortest unique substring (SUS) for an interval [s, t] if (a) u occurs exactly once in T, (b) u contains the interval [s,t](i.e. i <= s <= t <= j), and (c) every substring v of T with vertical bar v vertical bar < vertical bar u vertical bar containing [s, t] occurs at least twice in T. Given a query interval [s, t] subset of [1, n], the interval SUS problem is to output all the SUSs for the interval [s, t]. In this article, we propose a 4n + o(n) bits data structure answering an interval SUS query in output-sensitive O(occ) time, where occ is the number of returned SUSs. Additionally, we focus on the point SUS problem, which is the interval SUS problem for s = t. Here, we propose a (sic)(log(2)3 + 1)n(sic) + o(n) bits data structure answering a point SUS query in the same output-sensitive time. We also propose space-efficient algorithms for computing the minimal unique substrings of T. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 242
页数:13
相关论文
共 50 条
  • [41] Space-efficient optical computing with an integrated chip diffractive neural network
    H. H. Zhu
    J. Zou
    H. Zhang
    Y. Z. Shi
    S. B. Luo
    N. Wang
    H. Cai
    L. X. Wan
    B. Wang
    X. D. Jiang
    J. Thompson
    X. S. Luo
    X. H. Zhou
    L. M. Xiao
    W. Huang
    L. Patrick
    M. Gu
    L. C. Kwek
    A. Q. Liu
    Nature Communications, 13
  • [42] A space-efficient algorithm for computing the minimum cycle mean in a directed graph
    Pilarczyk, Pawel
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (04): : 349 - 355
  • [43] Simple, space-efficient, and fairness improved FCFS mutual exclusion algorithms
    Aravind, Alex A.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2013, 73 (08) : 1029 - 1038
  • [44] Space-Efficient and Output-Sensitive Implementations of Greedy Algorithms on Intervals
    Saitoh, Toshiki
    Kirkpatrick, David G.
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 320 - 332
  • [45] Faster Space-Efficient Algorithms for Subset Sum and k-Sum
    Bansal, Nikhil
    Garg, Shashwat
    Nederlof, Jesper
    Vyas, Nikhil
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 198 - 209
  • [46] Space-efficient optical computing with an integrated chip diffractive neural network
    Zhu, H. H.
    Zou, J.
    Zhang, H.
    Shi, Y. Z.
    Luo, S. B.
    Wang, N.
    Cai, H.
    Wan, L. X.
    Wang, B.
    Jiang, X. D.
    Thompson, J.
    Luo, X. S.
    Zhou, X. H.
    Xiao, L. M.
    Huang, W.
    Patrick, L.
    Gu, M.
    Kwek, L. C.
    Liu, A. Q.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [47] Improving Emulation of Quantum Algorithms using Space-Efficient Hardware Architectures
    Mahmud, Naveed
    El-Araby, Esam
    2019 IEEE 30TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 2019), 2019, : 206 - 213
  • [48] Efficient approximation algorithms for computing k disjoint constrained shortest paths
    Longkun Guo
    Journal of Combinatorial Optimization, 2016, 32 : 144 - 158
  • [49] Efficient parameterized algorithms for computing all-pairs shortest paths
    Kratsch, Stefan
    Nelles, Florian
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 102 - 119
  • [50] Efficient approximation algorithms for computing k disjoint constrained shortest paths
    Guo, Longkun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 144 - 158