Efficient parameterized algorithms for computing all-pairs shortest paths

被引:0
|
作者
Kratsch, Stefan [1 ]
Nelles, Florian [1 ]
机构
[1] Humboldt Univ, Unter Linden 6, D-10099 Berlin, Germany
关键词
All-pairs shortest paths; Efficient parameterized algorithms; Parameterized complexity; Clique-width; Modular-width; TRIANGLE; GRAPHS;
D O I
10.1016/j.dam.2023.07.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing for all pairs of vertices the shortest paths in a graph is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n(3)) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n(2.842)), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or '' FPT in P ''), we investigate the influence of the graph parameters clique-width (cw) and modular-width (mw) on the running times of algorithms for solving vertex-weighted all-pairs shortest paths. We obtain efficient (and combinatorial) parameterized algorithms of times O(cw(2)n(2)), resp. O(mw(2)n + n(2)). If fast matrix multiplication is allowed then the latter can be improved to O(mw(1.842)n+ n(2)) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mw equal to n, and outperforms it already for mw epsilon O(n(1-epsilon)) for any epsilon > 0. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 50 条
  • [1] Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths
    Kratsch, Stefan
    Nelles, Florian
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [2] Algorithms for maintaining all-pairs shortest paths
    Misra, S
    Oommen, BJ
    10TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2005, : 116 - 121
  • [3] Two fast algorithms for all-pairs shortest paths
    Duin, C. W.
    COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (09) : 2824 - 2839
  • [4] More Algorithms for All-Pairs Shortest Paths in Weighted Graphs
    Chan, Timothy M.
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 590 - 598
  • [5] Computing All-Pairs Shortest Paths by Leveraging Low Treewidth
    Planken, Leon
    de Weerdt, Mathijs
    van der Krogt, Roman
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2012, 43 : 353 - 388
  • [6] MORE ALGORITHMS FOR ALL-PAIRS SHORTEST PATHS IN WEIGHTED GRAPHS
    Chan, Timothy M.
    SIAM JOURNAL ON COMPUTING, 2010, 39 (05) : 2075 - 2089
  • [7] Computing all-pairs shortest paths by leveraging low treewidth
    Planken, Leon
    Weerdt, Mathijs De
    Krogt, Roman Van Der
    Planken, L. (l.r.planken@tudelft.nl), 1600, AI Access Foundation (43): : 353 - 388
  • [8] All-pairs almost shortest paths
    Dor, D
    Halperin, S
    Zwick, U
    SIAM JOURNAL ON COMPUTING, 2000, 29 (05) : 1740 - 1759
  • [9] Massively parallel algorithms for fully dynamic all-pairs shortest paths
    Wang, Chilei
    Hua, Qiang-Sheng
    Jin, Hai
    Zheng, Chaodong
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (04)
  • [10] FB-APSP: A new efficient algorithm for computing all-pairs shortest-paths
    Pereira Junior, Dyson
    Gomes Wille, Emilio Carlos
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2018, 121 : 33 - 43