Efficient parameterized algorithms for computing all-pairs shortest paths

被引:0
|
作者
Kratsch, Stefan [1 ]
Nelles, Florian [1 ]
机构
[1] Humboldt Univ, Unter Linden 6, D-10099 Berlin, Germany
关键词
All-pairs shortest paths; Efficient parameterized algorithms; Parameterized complexity; Clique-width; Modular-width; TRIANGLE; GRAPHS;
D O I
10.1016/j.dam.2023.07.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing for all pairs of vertices the shortest paths in a graph is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n(3)) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n(2.842)), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or '' FPT in P ''), we investigate the influence of the graph parameters clique-width (cw) and modular-width (mw) on the running times of algorithms for solving vertex-weighted all-pairs shortest paths. We obtain efficient (and combinatorial) parameterized algorithms of times O(cw(2)n(2)), resp. O(mw(2)n + n(2)). If fast matrix multiplication is allowed then the latter can be improved to O(mw(1.842)n+ n(2)) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mw equal to n, and outperforms it already for mw epsilon O(n(1-epsilon)) for any epsilon > 0. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 50 条
  • [31] A Branch-Checking Algorithm for All-Pairs Shortest Paths
    Cees Duin
    Algorithmica , 2005, 41 : 131 - 145
  • [32] Fast 2-Approximate All-Pairs Shortest Paths
    Dory, Michal
    Forster, Sebastian
    Kirkpatrick, Yael
    Nazari, Yasamin
    Williams, Virginia Vassilevska
    de Vos, Tijn
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4728 - 4757
  • [33] On the comparison-addition complexity of all-pairs shortest paths
    Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, United States
    Lect. Notes Comput. Sci., (32-43):
  • [34] Incremental maintenance of all-pairs shortest paths in relational DBMSs
    Greco S.
    Molinaro C.
    Pulice C.
    Quintana X.
    Social Network Analysis and Mining, 2017, 7 (1)
  • [35] A branch-checking algorithm for all-pairs shortest paths
    Duin, C
    ALGORITHMICA, 2005, 41 (02) : 131 - 145
  • [36] From Circuit Complexity to Faster All-Pairs Shortest Paths
    Williams, R. Ryan
    SIAM REVIEW, 2021, 63 (03) : 559 - 582
  • [37] Faster All-Pairs Shortest Paths Via Circuit Complexity
    Williams, Ryan
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 664 - 673
  • [38] Dynamic approximate all-pairs shortest paths in undirected graphs
    Roditty, L
    Zwick, U
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 499 - 508
  • [39] All-pairs shortest paths algorithm for highdimensional sparse graphs
    Urakov, A. R.
    Timeryaev, T., V
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 19 (01): : 84 - 92
  • [40] FASTER ALL-PAIRS SHORTEST PATHS VIA CIRCUIT COMPLEXITY
    Williams, R. Ryan
    SIAM JOURNAL ON COMPUTING, 2018, 47 (05) : 1965 - 1985