Efficient parameterized algorithms for computing all-pairs shortest paths

被引:0
|
作者
Kratsch, Stefan [1 ]
Nelles, Florian [1 ]
机构
[1] Humboldt Univ, Unter Linden 6, D-10099 Berlin, Germany
关键词
All-pairs shortest paths; Efficient parameterized algorithms; Parameterized complexity; Clique-width; Modular-width; TRIANGLE; GRAPHS;
D O I
10.1016/j.dam.2023.07.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computing for all pairs of vertices the shortest paths in a graph is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n(3)) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n(2.842)), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or '' FPT in P ''), we investigate the influence of the graph parameters clique-width (cw) and modular-width (mw) on the running times of algorithms for solving vertex-weighted all-pairs shortest paths. We obtain efficient (and combinatorial) parameterized algorithms of times O(cw(2)n(2)), resp. O(mw(2)n + n(2)). If fast matrix multiplication is allowed then the latter can be improved to O(mw(1.842)n+ n(2)) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mw equal to n, and outperforms it already for mw epsilon O(n(1-epsilon)) for any epsilon > 0. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 50 条
  • [21] A blocked all-pairs shortest-paths algorithm
    Venkataraman, G
    Sahni, S
    Mukhopadhyaya, S
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 419 - 432
  • [22] ALL-PAIRS SHORTEST PATHS IN GEOMETRIC INTERSECTION GRAPHS
    Chan, Timothy M.
    Skrepetos, Dimitrios
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2019, 10 (01) : 27 - 41
  • [23] Efficient Parallel All-Pairs Shortest Paths Algorithm for Complex Graph Analysis
    Kim, Jong Wook
    Choi, Hyoeun
    Bae, Seung-Hee
    47TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP '18), 2018,
  • [24] Efficient Parallel Processing of All-Pairs Shortest Paths on Multicore and GPU Systems
    Alghamdi, Mohammed H.
    He, Ligang
    Ren, Shenyuan
    Maray, Mohammed
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2896 - 2908
  • [25] An efficient dynamic algorithm for maintaining all-pairs shortest paths in stochastic networks
    Misra, S
    Oommen, BJ
    IEEE TRANSACTIONS ON COMPUTERS, 2006, 55 (06) : 686 - 702
  • [26] All-pairs shortest paths computation in the BSP model
    Tiskin, A
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 178 - 189
  • [27] All-Pairs Shortest Paths in Geometric Intersection Graphs
    Chan, Timothy M.
    Skrepetos, Dimitrios
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 253 - 264
  • [28] Efficient Maintenance of All-Pairs Shortest Distances
    Greco, Sergio
    Molinaro, Cristian
    Pulice, Chiara
    28TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM) 2016), 2016,
  • [29] External memory algorithms for diameter and all-pairs shortest-paths on sparse graphs
    Arge, L
    Meyer, U
    Toma, L
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 146 - 157
  • [30] Algorithms for all-pairs reliable quickest paths
    Bang, YC
    Rao, NSV
    Radhakrishnan, S
    COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS, 2003, 2658 : 678 - 684