Space-efficient algorithms for computing minimal/shortest unique substrings

被引:0
|
作者
Mieno, Takuya [1 ]
Koppl, Dominik [1 ,2 ]
Nakashima, Yuto [1 ]
Inenaga, Shunsuke [1 ,3 ]
Bannai, Hideo [1 ,4 ]
Takeda, Masayuki [1 ]
机构
[1] Kyushu Univ, Dept Informat, Fukuoka, Japan
[2] Japan Soc Promot Sci, Tokyo, Japan
[3] Japan Sci & Technol Agcy, PRESTO, Saitama, Japan
[4] Tokyo Med & Dent Univ, Tokyo, Japan
关键词
String processing algorithm; Shortest unique substring; Minimal unique substring; Compact data structure; SUCCINCT REPRESENTATIONS; SUFFIX ARRAYS; SHORTEST;
D O I
10.1016/j.tcs.2020.09.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a string T of lengthn, a substring u = T[i.. j] of T is called a shortest unique substring (SUS) for an interval [s, t] if (a) u occurs exactly once in T, (b) u contains the interval [s,t](i.e. i <= s <= t <= j), and (c) every substring v of T with vertical bar v vertical bar < vertical bar u vertical bar containing [s, t] occurs at least twice in T. Given a query interval [s, t] subset of [1, n], the interval SUS problem is to output all the SUSs for the interval [s, t]. In this article, we propose a 4n + o(n) bits data structure answering an interval SUS query in output-sensitive O(occ) time, where occ is the number of returned SUSs. Additionally, we focus on the point SUS problem, which is the interval SUS problem for s = t. Here, we propose a (sic)(log(2)3 + 1)n(sic) + o(n) bits data structure answering a point SUS query in the same output-sensitive time. We also propose space-efficient algorithms for computing the minimal unique substrings of T. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:230 / 242
页数:13
相关论文
共 50 条
  • [21] A SPACE-EFFICIENT ONLINE METHOD OF COMPUTING QUANTILE ESTIMATES
    PEARL, J
    JOURNAL OF ALGORITHMS, 1981, 2 (02) : 164 - 177
  • [22] Space-efficient binary optimization for variational quantum computing
    Adam Glos
    Aleksandra Krawiec
    Zoltán Zimborás
    npj Quantum Information, 8
  • [23] Space-efficient parallel algorithms for combinatorial search problems
    Pietracaprina, A.
    Pucci, G.
    Silvestri, F.
    Vandin, F.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 76 : 58 - 65
  • [24] Scalable and space-efficient Robust Matroid Center algorithms
    Matteo Ceccarello
    Andrea Pietracaprina
    Geppino Pucci
    Federico Soldà
    Journal of Big Data, 10
  • [25] Space-Efficient Randomized Algorithms for K-SUM
    Wang, Joshua R.
    ALGORITHMS - ESA 2014, 2014, 8737 : 810 - 829
  • [26] Space-efficient geometric divide-and-conquer algorithms
    Bose, Prosenjit
    Maheshwari, Anil
    Morin, Pat
    Morrison, Jason
    Smid, Michiel
    Vahrenhold, Jan
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 37 (03): : 209 - 227
  • [27] Fast and Space-Efficient Parallel Algorithms for Influence Maximization
    Wang, Letong
    Ding, Xiangyun
    Gu, Yan
    Sun, Yihan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 17 (03): : 400 - 413
  • [28] Space-Efficient Parallel Algorithms for Combinatorial Search Problems
    Pietracaprina, Andrea
    Pucci, Geppino
    Silvestri, Francesco
    Vandin, Fabio
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2013, 2013, 8087 : 717 - 728
  • [29] Minimal Unique Substrings and Minimal Absent Words in a Sliding Window
    Mieno, Takuya
    Kuhara, Yuki
    Akagi, Tooru
    Fujishige, Yuta
    Nakashima, Yuto
    Inenaga, Shunsuke
    Bannai, Hideo
    Takeda, Masayuki
    SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 148 - 160
  • [30] Space-efficient algorithms for reachability in directed geometric graphs
    Bhore, Sujoy
    Jain, Rahul
    THEORETICAL COMPUTER SCIENCE, 2023, 961