GPstuff: Bayesian Modeling with Gaussian Processes

被引:0
|
作者
Vanhatalo, Jarno [1 ]
Riihimaki, Jaakko [2 ]
Hartikainen, Jouni [2 ]
Jylanki, Pasi [2 ]
Tolvanen, Ville [2 ]
Vehtari, Aki [2 ]
机构
[1] Univ Helsinki, Dept Environm Sci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Gaussian process; Bayesian hierarchical model; nonparametric Bayes;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for Bayesian inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.
引用
收藏
页码:1175 / 1179
页数:5
相关论文
共 50 条
  • [41] Regression on the basis of nonstationary Gaussian processes with Bayesian regularization
    Burnaev, E. V.
    Panov, M. E.
    Zaytsev, A. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2016, 61 (06) : 661 - 671
  • [42] Domain Invariant Learning for Gaussian Processes and Bayesian Exploration
    Zhao, Xilong
    Bian, Siyuan
    Zhang, Yaoyun
    Zhang, Yuliang
    Gu, Qinying
    Wang, Xinbing
    Zhou, Chenghu
    Ye, Nanyang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17024 - 17032
  • [43] Variational Bayesian Multiple Instance Learning with Gaussian Processes
    Haussmann, Manuel
    Hamprecht, Fred A.
    Kandemir, Melih
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 810 - 819
  • [44] Bayesian mixture of gaussian processes for data association problem
    Jeon, Younghwan
    Hwang, Ganguk
    PATTERN RECOGNITION, 2022, 127
  • [45] Bayesian Optimisation of Gaussian Processes for Identifying the Deteriorating Patient
    Colopy, Glen Wright
    Pimentel, Marco A. F.
    Roberts, Stephen J.
    Clifton, David A.
    2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 85 - 88
  • [46] Pseudo-Marginal Bayesian Inference for Gaussian Processes
    Filippone, Maurizio
    Girolami, Mark
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (11) : 2214 - 2226
  • [47] JOINT GAUSSIAN PROCESSES FOR INVERSE MODELING
    Heestermans Svendsen, Daniel
    Martino, Luca
    Campos-Taberner, Manuel
    Camps-Valls, Gustau
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3980 - 3983
  • [48] Recursive Gaussian processes for discrepancy modeling
    Feldmann, R.
    Gehb, C. M.
    Schaeffner, M.
    Melz, T.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 3749 - 3758
  • [49] Online User Modeling with Gaussian Processes for Bayesian Plan Recognition during Power-wheelchair Steering
    Huentemann, Alexander
    Demeester, Eric
    Nuttin, Marnix
    Van Brussel, Hendrik
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 285 - 292
  • [50] Bayesian Modeling with Spatial Curvature Processes
    Halder, Aritra
    Banerjee, Sudipto
    Dey, Dipak K.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1155 - 1167