GPstuff: Bayesian Modeling with Gaussian Processes

被引:0
|
作者
Vanhatalo, Jarno [1 ]
Riihimaki, Jaakko [2 ]
Hartikainen, Jouni [2 ]
Jylanki, Pasi [2 ]
Tolvanen, Ville [2 ]
Vehtari, Aki [2 ]
机构
[1] Univ Helsinki, Dept Environm Sci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Gaussian process; Bayesian hierarchical model; nonparametric Bayes;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for Bayesian inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.
引用
收藏
页码:1175 / 1179
页数:5
相关论文
共 50 条
  • [31] Bayesian Experimental Design for LEDs using Gaussian Processes
    Forster, Peter
    Schoeps, Sebastian
    Schilders, Wil
    Boeckhorst, Stephan
    Mevenkamp, Maximilian
    2023 29TH INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS, THERMINIC, 2023,
  • [32] Inversion of hierarchical Bayesian models using Gaussian processes
    Lomakina, Ekaterina I.
    Paliwal, Saee
    Diaconescu, Andreea O.
    Brodersen, Kay H.
    Aponte, Eduardo A.
    Buhmann, Joachim M.
    Stephan, Klaas E.
    NEUROIMAGE, 2015, 118 : 133 - 145
  • [33] Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes
    Finley, Andrew O.
    Datta, Abhirup
    Cook, Bruce D.
    Morton, Douglas C.
    Andersen, Hans E.
    Banerjee, Sudipto
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (02) : 401 - 414
  • [34] Regression on the basis of nonstationary Gaussian processes with Bayesian regularization
    E. V. Burnaev
    M. E. Panov
    A. A. Zaytsev
    Journal of Communications Technology and Electronics, 2016, 61 : 661 - 671
  • [35] Bayesian Reinforcement Learning in Continuous POMDPs with Gaussian Processes
    Dallaire, Patrick
    Besse, Camille
    Ross, Stephane
    Chaib-draa, Brahim
    2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 2604 - 2609
  • [36] Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations
    Wang, Yali
    Barber, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1485 - 1493
  • [37] GPstruct: Bayesian Structured Prediction Using Gaussian Processes
    Bratieres, Sebastien
    Quadrianto, Novi
    Ghahramani, Zoubin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (07) : 1514 - 1520
  • [38] Pre-trained Gaussian Processes for Bayesian Optimization
    Wang, Zi
    Dahl, George E.
    Swersky, Kevin
    Lee, Chansoo
    Nado, Zachary
    Gilmer, Justin
    Snoek, Jasper
    Ghahramani, Zoubin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [39] Bayesian Image Classification with Deep Convolutional Gaussian Processes
    Dutordoir, Vincent
    van der Wilk, Mark
    Artemev, Artem
    Hensman, James
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1529 - 1538
  • [40] Gaussian Processes for Bayesian hypothesis tests on regression functions
    Benavoli, Alessio
    Mangili, Francesca
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 74 - 82