Pseudo-Marginal Bayesian Inference for Gaussian Processes

被引:41
|
作者
Filippone, Maurizio [1 ]
Girolami, Mark [2 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Hierarchic Bayesian models; Gaussian processes; Markov chain Monte Carlo; pseudo-marginal Monte Carlo; Kernel methods; approximate Bayesian inference; CLASSIFICATION; APPROXIMATIONS; FRAMEWORK; MODELS;
D O I
10.1109/TPAMI.2014.2316530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main challenges that arise when adopting Gaussian process priors in probabilistic modeling are how to carry out exact Bayesian inference and how to account for uncertainty on model parameters when making model-based predictions on out-of-sample data. Using probit regression as an illustrative working example, this paper presents a general and effective methodology based on the pseudo-marginal approach to Markov chain Monte Carlo that efficiently addresses both of these issues. The results presented in this paper show improvements over existing sampling methods to simulate from the posterior distribution over the parameters defining the covariance function of the Gaussian Process prior. This is particularly important as it offers a powerful tool to carry out full Bayesian inference of Gaussian Process based hierarchic statistical models in general. The results also demonstrate that Monte Carlo based integration of all model parameters is actually feasible in this class of models providing a superior quantification of uncertainty in predictions. Extensive comparisons with respect to state-of-the-art probabilistic classifiers confirm this assertion.
引用
收藏
页码:2214 / 2226
页数:13
相关论文
共 50 条
  • [1] Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC
    Filippone, Maurizio
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 614 - 619
  • [2] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [3] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    Machine Learning, 2021, 110 : 1105 - 1143
  • [4] Bayesian Inference for Irreducible Diffusion Processes Using the Pseudo-Marginal Approach
    Stramer, Osnat
    Bognar, Matthew
    BAYESIAN ANALYSIS, 2011, 6 (02): : 231 - 258
  • [5] Accelerating pseudo-marginal MCMC using Gaussian processes
    Drovandi, Christopher C.
    Moores, Matthew T.
    Boys, Richard J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 1 - 17
  • [6] Inference of geostatistical hyperparameters with the correlated pseudo-marginal method
    Friedli, Lea
    Linde, Niklas
    Ginsbourger, David
    Visentini, Alejandro Fernandez
    Doucet, Arnaud
    ADVANCES IN WATER RESOURCES, 2023, 173
  • [7] A practical guide to pseudo-marginal methods for computational inference in systems biology
    Warne, David J.
    Baker, Ruth E.
    Simpson, Matthew J.
    JOURNAL OF THEORETICAL BIOLOGY, 2020, 496
  • [8] Pseudo-Marginal Slice Sampling
    Murray, Iain
    Graham, Matthew M.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 911 - 919
  • [9] Pseudo-Marginal Inference for CTMCs on Infinite Spaces via Monotonic Likelihood Approximations
    Biron-Lattes, Miguel
    Bouchard-Cote, Alexandre
    Campbell, Trevor
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 513 - 527
  • [10] A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice
    Kobayashi, Genya
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 : 167 - 183