On groups where the twisted conjugacy class of the unit element is a subgroup

被引:6
|
作者
Goncalves, Daciberg Lima [1 ]
Nasybullov, Timur [2 ]
机构
[1] Univ Sao Paulo, Dept Math IME, Sao Paulo, Brazil
[2] KU Leuven KULAK, Dept Math, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
基金
比利时弗兰德研究基金会; 巴西圣保罗研究基金会;
关键词
(Residually) nilpotent groups; twisted conjugacy classes; verbal width; AUTOMORPHISMS;
D O I
10.1080/00927872.2018.1498873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study groups G where the -conjugacy class of the unit element is a subgroup of G for every automorphism of G. If G has n generators, then we prove that the k-th member of the lower central series has a finite verbal width bounded in terms of n, k. Moreover, we prove that if such group G satisfies the descending chain condition for normal subgroups, then G is nilpotent, what generalizes the result from [Bardakov, Nasybullov, and Neshchadim]. Finally, if G is a finite abelian-by-cyclic group, we construct a good upper bound of the nilpotency class of G.
引用
收藏
页码:930 / 944
页数:15
相关论文
共 50 条