On groups where the twisted conjugacy class of the unit element is a subgroup

被引:6
|
作者
Goncalves, Daciberg Lima [1 ]
Nasybullov, Timur [2 ]
机构
[1] Univ Sao Paulo, Dept Math IME, Sao Paulo, Brazil
[2] KU Leuven KULAK, Dept Math, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
基金
比利时弗兰德研究基金会; 巴西圣保罗研究基金会;
关键词
(Residually) nilpotent groups; twisted conjugacy classes; verbal width; AUTOMORPHISMS;
D O I
10.1080/00927872.2018.1498873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study groups G where the -conjugacy class of the unit element is a subgroup of G for every automorphism of G. If G has n generators, then we prove that the k-th member of the lower central series has a finite verbal width bounded in terms of n, k. Moreover, we prove that if such group G satisfies the descending chain condition for normal subgroups, then G is nilpotent, what generalizes the result from [Bardakov, Nasybullov, and Neshchadim]. Finally, if G is a finite abelian-by-cyclic group, we construct a good upper bound of the nilpotency class of G.
引用
收藏
页码:930 / 944
页数:15
相关论文
共 50 条
  • [41] Normalized unit groups and their conjugacy classes
    S Kaur
    M Khan
    Proceedings - Mathematical Sciences, 2020, 130
  • [42] TWISTED CONJUGACY CLASSES IN LATTICES IN SEMISIMPLE LIE GROUPS
    Mubeena, T.
    Sankaran, P.
    TRANSFORMATION GROUPS, 2014, 19 (01) : 159 - 169
  • [43] Twisted conjugacy classes in saturated weakly branch groups
    Alexander Fel’shtyn
    Yuriy Leonov
    Evgenij Troitsky
    Geometriae Dedicata, 2008, 134 : 61 - 73
  • [44] Normalized unit groups and their conjugacy classes
    Kaur, S.
    Khan, M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [45] Subgroup conjugacy problem for Garside subgroups of Garside groups
    Kalka, Arkadius
    Liberman, Eran
    Teicher, Mina
    GROUPS COMPLEXITY CRYPTOLOGY, 2010, 2 (02) : 157 - 174
  • [46] Twisted conjugacy classes in saturated weakly branch groups
    Fel'shtyn, Alexander
    Leonov, Yuriy
    Troitsky, Evgenij
    GEOMETRIAE DEDICATA, 2008, 134 (01) : 61 - 73
  • [47] Twisted conjugacy in PL-homeomorphism groups of the circle
    Goncalves, Daciberg Lima
    Sankaran, Parameswaran
    GEOMETRIAE DEDICATA, 2019, 202 (01) : 311 - 320
  • [48] Twisted conjugacy classes in general and special linear groups
    T. R. Nasybullov
    Algebra and Logic, 2012, 51 : 220 - 231
  • [49] CONJUGACY AND ELEMENT-CONJUGACY OF HOMOMORPHISMS OF COMPACT LIE GROUPS
    Fang, Yingjue
    Han, Gang
    Sun, Binyong
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 283 (01) : 75 - 83
  • [50] Solvable conjugacy class graph of groups
    Bhowal, Parthajit
    Cameron, Peter J.
    Nath, Rajat Kanti
    Sambale, Benjamin
    DISCRETE MATHEMATICS, 2023, 346 (08)