ProTrack: An Interactive Multi-Omics Data Browser for Proteogenomic Studies

被引:11
|
作者
Calinawan, Anna Pamela [1 ]
Song, Xiaoyu [2 ,3 ]
Ji, Jiayi [2 ,3 ]
Dhanasekaran, Saravana Mohan [4 ]
Petralia, Francesca [1 ]
Wang, Pei [1 ]
Reva, Boris [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[4] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1002/pmic.201900359
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) initiative has generated extensive multi-omics data resources of deep proteogenomic profiles for multiple cancer types. To enable the broader community of biological and medical researchers to intuitively query, explore, and download data and analysis results from various CPTAC projects, a prototype user-friendly web application called "ProTrack" is built with the CPTAC clear cell renal cell carcinoma (ccRCC) data set (). Here the salient features of this application which provides a dynamic, comprehensive, and granular visualization of the rich proteogenomic data is described.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies
    Mario Zanfardino
    Rossana Castaldo
    Katia Pane
    Ornella Affinito
    Marco Aiello
    Marco Salvatore
    Monica Franzese
    Scientific Reports, 11
  • [42] Editorial: Artificial intelligence and bioinformatics applications for omics and multi-omics studies
    Facchiano, Angelo
    Heider, Dominik
    Mutarelli, Margherita
    FRONTIERS IN GENETICS, 2024, 15
  • [43] Cell-Type-Specific Proteogenomic Signal Diffusion for Integrating Multi-Omics Data Predicts Novel Schizophrenia Risk Genes
    Torshizi, Abolfazl Doostparast
    Duan, Jubao
    Wang, Kai
    PATTERNS, 2020, 1 (06):
  • [44] Interactive gene identification for cancer subtyping based on multi-omics clustering
    Ye, Xiucai
    Shi, Tianyi
    Cui, Yaxuan
    Sakurai, Tetsuya
    METHODS, 2023, 211 : 61 - 67
  • [45] MOVICShiny: An interactive website for multi-omics integration and visualisation in cancer subtyping
    Zhu, Junkai
    Zhu, Yuyao
    Wang, Xin
    Cheng, Wenxuan
    Wang, Shuaiyi
    Yang, Junluo
    Wang, Wenxuan
    Wang, Yuhang
    Meng, Jialin
    Lu, Xiaofan
    Yan, Fangrong
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (03):
  • [46] Are multi-omics enough?
    Cristina Vilanova
    Manuel Porcar
    Nature Microbiology, 1 (8)
  • [47] Editorial: Multi-omics studies and applications in precision medicine
    John, Arivusudar Everad
    FRONTIERS IN GENETICS, 2022, 13
  • [48] Undisclosed, unmet and neglected challenges in multi-omics studies
    Sonia Tarazona
    Angeles Arzalluz-Luque
    Ana Conesa
    Nature Computational Science, 2021, 1 : 395 - 402
  • [49] Multi-omics data of gastric cancer cell lines
    Seo, Eun-Hye
    Shin, Yun-Jae
    Kim, Hee-Jin
    Kim, Jeong-Hwan
    Kim, Yong Sung
    Kim, Seon-Young
    BMC GENOMIC DATA, 2023, 24 (01):
  • [50] Multi-omics data integration approaches for precision oncology
    Correa-Aguila, Raidel
    Alonso-Pupo, Niuxia
    Hernandez-Rodriguez, Erix W.
    MOLECULAR OMICS, 2022, 18 (06) : 469 - 479