ProTrack: An Interactive Multi-Omics Data Browser for Proteogenomic Studies

被引:11
|
作者
Calinawan, Anna Pamela [1 ]
Song, Xiaoyu [2 ,3 ]
Ji, Jiayi [2 ,3 ]
Dhanasekaran, Saravana Mohan [4 ]
Petralia, Francesca [1 ]
Wang, Pei [1 ]
Reva, Boris [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[4] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1002/pmic.201900359
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) initiative has generated extensive multi-omics data resources of deep proteogenomic profiles for multiple cancer types. To enable the broader community of biological and medical researchers to intuitively query, explore, and download data and analysis results from various CPTAC projects, a prototype user-friendly web application called "ProTrack" is built with the CPTAC clear cell renal cell carcinoma (ccRCC) data set (). Here the salient features of this application which provides a dynamic, comprehensive, and granular visualization of the rich proteogenomic data is described.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A cloud solution for multi-omics data integration
    Tordini, Fabio
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 559 - 566
  • [32] Making multi-omics data accessible to researchers
    Conesa, Ana
    Beck, Stephan
    SCIENTIFIC DATA, 2019, 6 (1)
  • [33] Integrative clustering methods for multi-omics data
    Zhang, Xiaoyu
    Zhou, Zhenwei
    Xu, Hanfei
    Liu, Ching-Ti
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (03)
  • [34] Towards multi-omics synthetic data integration
    Selvarajoo, Kumar
    Maurer-Stroh, Sebastian
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [35] Relevance of Multi-Omics Studies in Cardiovascular Diseases
    Leon-Mimila, Paola
    Wang, Jessica
    Huertas-Vazquez, Adriana
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2019, 6
  • [36] Machine learning for the analysis of multi-omics data
    Sun, Yanni
    METHODS, 2021, 189 : 1 - 2
  • [37] Integrating multi-omics data for crop improvement
    Scossa, Federico
    Alseekh, Saleh
    Fernie, Alisdair R.
    JOURNAL OF PLANT PHYSIOLOGY, 2021, 257
  • [38] Representation Learning for the Clustering of Multi-Omics Data
    Viaud, Gautier
    Mayilvahanan, Prasanna
    Cournede, Paul-Henry
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (01) : 135 - 145
  • [39] GERDH: an interactive multi-omics database for cross-species data mining in horticultural crops
    Cheng, Hua
    Zhang, Hua
    Song, Jing
    Jiang, Jiafu
    Chen, Sumei
    Chen, Fadi
    Wang, Likai
    PLANT JOURNAL, 2023, 116 (04): : 1018 - 1029
  • [40] MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies
    Zanfardino, Mario
    Castaldo, Rossana
    Pane, Katia
    Affinito, Ornella
    Aiello, Marco
    Salvatore, Marco
    Franzese, Monica
    SCIENTIFIC REPORTS, 2021, 11 (01)