ProTrack: An Interactive Multi-Omics Data Browser for Proteogenomic Studies

被引:11
|
作者
Calinawan, Anna Pamela [1 ]
Song, Xiaoyu [2 ,3 ]
Ji, Jiayi [2 ,3 ]
Dhanasekaran, Saravana Mohan [4 ]
Petralia, Francesca [1 ]
Wang, Pei [1 ]
Reva, Boris [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[4] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1002/pmic.201900359
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Clinical Proteomic Tumor Analysis Consortium (CPTAC) initiative has generated extensive multi-omics data resources of deep proteogenomic profiles for multiple cancer types. To enable the broader community of biological and medical researchers to intuitively query, explore, and download data and analysis results from various CPTAC projects, a prototype user-friendly web application called "ProTrack" is built with the CPTAC clear cell renal cell carcinoma (ccRCC) data set (). Here the salient features of this application which provides a dynamic, comprehensive, and granular visualization of the rich proteogenomic data is described.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [22] MODAS: exploring maize germplasm with multi-omics data association studies
    Liu, Songyu
    Xu, Feng
    Xu, Yuetong
    Wang, Qian
    Yan, Jun
    Wang, Jinyu
    Wang, Xianbing
    Wang, Xiangfeng
    SCIENCE BULLETIN, 2022, 67 (09) : 903 - 906
  • [23] Panomicon: A web-based environment for interactive, visual analysis of multi-omics data
    Osorio, Rodolfo S. Allendes
    Nystrom-Persson, Johan T.
    Nojima, Yosui
    Kosugi, Yuji
    Mizuguchi, Kenji
    Natsume-Kitatani, Yayoi
    HELIYON, 2020, 6 (08)
  • [24] ExpressVis: a biologist-oriented interactive web server for exploring multi-omics data
    Liu, Xian
    Xu, Kaikun
    Tao, Xin
    Yin, Ronghua
    Ren, Guangming
    Yu, Miao
    Li, Changyan
    Chen, Hui
    Zhao, Ke
    Xiang, Shensi
    Gao, Huiying
    Bo, Xiaochen
    Chang, Cheng
    Yang, Xiaoming
    NUCLEIC ACIDS RESEARCH, 2022, 50 (W1) : W312 - W321
  • [25] Proteogenomic signatures of Osteoporotic Fractures and Risk Prediction: A multi-omics approach for musculoskeletal biology
    Hsu, Yi-Hsiang
    Chang, Yu-Tien
    Yu, Fangtang
    Reppe, Sjur
    Gautvik, Kaare
    JOURNAL OF BONE AND MINERAL RESEARCH, 2024, 39 : 277 - 277
  • [26] Progress of bioinformatics studies for multi-omics and multi- modal data in complex diseases
    Liu, Xiaofan
    Lu, Zhi John
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (30): : 4432 - 4446
  • [27] Multi-omics Visualization Platform: An extensible Galaxy plug-in for multi-omics data visualization and exploration
    McGowan, Thomas
    Johnson, James E.
    Kumar, Praveen
    Sajulga, Ray
    Mehta, Subina
    Jagtap, Pratik D.
    Griffin, Timothy J.
    GIGASCIENCE, 2020, 9 (04):
  • [28] Multi-omics approach to stem cell studies
    Singh, Himadri
    MINERVA BIOTECNOLOGICA, 2017, 29 (04) : 169 - 173
  • [29] Multi-Omics Approaches in Genetic Epidemiology Studies
    Kechris, Katerina
    GENETIC EPIDEMIOLOGY, 2017, 41 (07) : 644 - 644
  • [30] Making multi-omics data accessible to researchers
    Ana Conesa
    Stephan Beck
    Scientific Data, 6