A subgradient method for multiobjective optimization

被引:39
|
作者
Da Cruz Neto, J. X. [1 ]
Da Silva, G. J. P. [2 ]
Ferreira, O. P. [2 ]
Lopes, J. O. [1 ]
机构
[1] Univ Fed Piaui, DM, BR-64049500 Teresina, PI, Brazil
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
关键词
Pareto optimality or efficiency; Multiobjective optimization; Subgradient method; Quasi-Fejer convergence;
D O I
10.1007/s10589-012-9494-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A method for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems is proposed in this paper. This method extends to the multiobjective case of the classical subgradient method for real-valued minimization. Assuming the basically componentwise quasiconvexity of the objective components, full convergence (to Pareto optimal points) of all the sequences produced by the method is established.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 50 条
  • [41] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [42] A STOCHASTIC SUBGRADIENT METHOD FOR NONSMOOTH NONCONVEX MULTILEVEL COMPOSITION OPTIMIZATION
    Ruszczynski, Andrzej
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (03) : 2301 - 2320
  • [43] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    Numerical Algorithms, 2023, 93 : 347 - 365
  • [44] A projection subgradient method for solving optimization with variational inequality constraints
    Xia, Fu-quan
    Li, Tao
    Zou, Yun-zhi
    OPTIMIZATION LETTERS, 2014, 8 (01) : 279 - 292
  • [45] STOCHASTIC SUBGRADIENT METHOD FOR QUASI-CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 711 - 724
  • [46] A method of centers with approximate subgradient linearizations for nonsmooth convex optimization
    Kiwiel, Krzysztof C.
    SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (04) : 1467 - 1489
  • [47] Weak subgradient method for solving nonsmooth nonconvex optimization problems
    Yalcin, Gulcin Dinc
    Kasimbeyli, Refail
    OPTIMIZATION, 2021, 70 (07) : 1513 - 1553
  • [48] Multiobjective topology optimization with the sko-method
    Inzenhofer, Andre
    Haikonen, Joona
    Hupfer, Andreas
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (01) : 325 - 340
  • [49] An accelerated proximal gradient method for multiobjective optimization
    Hiroki Tanabe
    Ellen H. Fukuda
    Nobuo Yamashita
    Computational Optimization and Applications, 2023, 86 : 421 - 455
  • [50] Generalized center method for multiobjective engineering optimization
    Cheng, FY
    Li, XS
    ENGINEERING OPTIMIZATION, 1999, 31 (05) : 641 - 661