A subgradient method for multiobjective optimization

被引:39
|
作者
Da Cruz Neto, J. X. [1 ]
Da Silva, G. J. P. [2 ]
Ferreira, O. P. [2 ]
Lopes, J. O. [1 ]
机构
[1] Univ Fed Piaui, DM, BR-64049500 Teresina, PI, Brazil
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
关键词
Pareto optimality or efficiency; Multiobjective optimization; Subgradient method; Quasi-Fejer convergence;
D O I
10.1007/s10589-012-9494-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A method for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems is proposed in this paper. This method extends to the multiobjective case of the classical subgradient method for real-valued minimization. Assuming the basically componentwise quasiconvexity of the objective components, full convergence (to Pareto optimal points) of all the sequences produced by the method is established.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 50 条
  • [31] AN ADAPTIVE SCALARIZATION METHOD IN MULTIOBJECTIVE OPTIMIZATION
    Eichfelder, Gabriele
    SIAM JOURNAL ON OPTIMIZATION, 2009, 19 (04) : 1694 - 1718
  • [32] Memory gradient method for multiobjective optimization
    Chen, Wang
    Yang, Xinmin
    Zhao, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 443
  • [33] Conditional gradient method for multiobjective optimization
    P. B. Assunção
    O. P. Ferreira
    L. F. Prudente
    Computational Optimization and Applications, 2021, 78 : 741 - 768
  • [34] Conditional gradient method for multiobjective optimization
    Assuncao, P. B.
    Ferreira, O. P.
    Prudente, L. F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (03) : 741 - 768
  • [35] A RANDOMIZED INCREMENTAL SUBGRADIENT METHOD FOR DISTRIBUTED OPTIMIZATION IN NETWORKED SYSTEMS
    Johansson, Bjorn
    Rabi, Maben
    Johansson, Mikael
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1157 - 1170
  • [36] A projection subgradient method for solving optimization with variational inequality constraints
    Fu-quan Xia
    Tao Li
    Yun-zhi Zou
    Optimization Letters, 2014, 8 : 279 - 292
  • [37] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Ya. I. Alber
    A. N. Iusem
    M. V. Solodov
    Mathematical Programming, 1998, 81 : 23 - 35
  • [38] CONVERGENCE OF A GENERALIZED SUBGRADIENT METHOD FOR NONDIFFERENTIABLE CONVEX-OPTIMIZATION
    KIM, S
    AHN, H
    MATHEMATICAL PROGRAMMING, 1991, 50 (01) : 75 - 80
  • [39] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, Ya.I.
    Iusem, A.N.
    Solodov, M.V.
    Mathematical Programming, Series A, 1998, 81 (01): : 23 - 35
  • [40] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, YI
    Iusem, AN
    Solodov, MV
    MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 23 - 35