A subgradient method for multiobjective optimization

被引:39
|
作者
Da Cruz Neto, J. X. [1 ]
Da Silva, G. J. P. [2 ]
Ferreira, O. P. [2 ]
Lopes, J. O. [1 ]
机构
[1] Univ Fed Piaui, DM, BR-64049500 Teresina, PI, Brazil
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
关键词
Pareto optimality or efficiency; Multiobjective optimization; Subgradient method; Quasi-Fejer convergence;
D O I
10.1007/s10589-012-9494-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A method for solving quasiconvex nondifferentiable unconstrained multiobjective optimization problems is proposed in this paper. This method extends to the multiobjective case of the classical subgradient method for real-valued minimization. Assuming the basically componentwise quasiconvexity of the objective components, full convergence (to Pareto optimal points) of all the sequences produced by the method is established.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 50 条
  • [21] Topology optimization of sheets in contact by a subgradient method
    Petersson, J
    Patriksson, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (07) : 1295 - 1321
  • [22] Primal-Dual ε-Subgradient Method for Distributed Optimization
    Zhu, Kui
    Tang, Yutao
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (02) : 577 - 590
  • [23] Primal-Dual ε-Subgradient Method for Distributed Optimization
    Kui Zhu
    Yutao Tang
    Journal of Systems Science and Complexity, 2023, 36 : 577 - 590
  • [24] Optimization Based Design with Subgradient Method in Recommender System
    Kurt, Zuhal
    Ozkan, Kemal
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [25] Max-Gossip Subgradient Method for Distributed Optimization
    Verma, Ashwin
    Vasconcelos, Marcos M.
    Mitra, Urbashi
    Touri, Behrouz
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3130 - 3136
  • [26] Primal-Dual ε-Subgradient Method for Distributed Optimization
    ZHU Kui
    TANG Yutao
    Journal of Systems Science & Complexity, 2023, 36 (02) : 577 - 590
  • [27] Quantized and Distributed Subgradient Optimization Method With Malicious Attack
    Emiola, Iyanuoluwa
    Enyioha, Chinwendu
    IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 181 - 186
  • [28] An effective subgradient algorithm via Mifflin's line search for nonsmooth nonconvex multiobjective optimization
    Maleknia, Morteza
    Soleimani-damaneh, Majid
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 319 (02) : 505 - 516
  • [29] NEWTON'S METHOD FOR MULTIOBJECTIVE OPTIMIZATION
    Fliege, J.
    Grana Drummond, L. M.
    Svaiter, B. F.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) : 602 - 626
  • [30] A generalized center method for multiobjective optimization
    Cheng, FY
    Li, XS
    OPTIMAL PERFORMANCE OF CIVIL INFRASTRUCTURE SYSTEMS, 1998, : 74 - 87