The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx

被引:0
|
作者
Zhang, Jin [1 ]
Li, Xiaoxue [2 ]
机构
[1] Univ Arts & Sci, Sch Math & Comp Engn, Xian, Shaanxi, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
elliptic curve; integer point; Diophantine equation;
D O I
10.1186/1029-242X-2014-104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and r be a fixed positive integer. Further let N(p(2r)) denote the number of pairs of integer points (x, +/- y) on the elliptic curve E : y(2) = x(3) + p(2r)x with y > 0. Using some properties of Diophantine equations, we give a sharper upper bound estimate for N(p(2r)). That is, we prove that N(p(2r)) <= 1, except with N(17(2(2s+ 1))) = 2, where s is a nonnegative integer.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] On the rank of the elliptic curve y2 = x3 + kx.: II
    Kihara, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (04) : 24 - 25
  • [42] On the rational solutions of y2 = x3
    Sharma, Richa
    Bhatter, Sanjay
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (03) : 130 - 142
  • [43] ON THE ELLIPTIC CURVES OF THE FORM y2 = x3-3px
    Daghigh, H.
    Didari, S.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (05) : 1119 - 1133
  • [44] Rational points on elliptic curves y2=x3+a3 in FP where p≡1 (mod 6) is prime
    Demirci, Musa
    Soydan, Gokhan
    Cangul, Ismail Naci
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (05) : 1483 - 1491
  • [45] On elliptic curves y2=x3-n2x with rank zero
    Feng, KQ
    Xiong, MS
    JOURNAL OF NUMBER THEORY, 2004, 109 (01) : 1 - 26
  • [46] THE ELLIPTIC CURVES y2 = x(x-1)(x - λ)
    Tekcan, Ahmet
    ARS COMBINATORIA, 2011, 99 : 519 - 529
  • [47] Integral points on the elliptic curve Epq: y2 = x3 + (pq-12) x-2(pq-8)
    Cheng, Teng
    Ji, Qingzhong
    Qin, Hourong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 343 - 352
  • [48] On the Mordell-Weil group of the elliptic curve y2 = x3 + n
    Fujita, Yasutsugu
    Nara, Tadahisa
    JOURNAL OF NUMBER THEORY, 2012, 132 (03) : 448 - 466
  • [49] The number of rational points on singular curves y2 = x(x - a)2 over finite fields Fp
    Tekcan, Ahmet
    World Academy of Science, Engineering and Technology, 2009, 35 : 997 - 1000
  • [50] Elliptic Curve Integral Points on y2 = x3+3x-14
    Zhao, Jianhong
    3RD INTERNATIONAL CONFERENCE ON ENERGY EQUIPMENT SCIENCE AND ENGINEERING (ICEESE 2017), 2018, 128