The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx

被引:0
|
作者
Zhang, Jin [1 ]
Li, Xiaoxue [2 ]
机构
[1] Univ Arts & Sci, Sch Math & Comp Engn, Xian, Shaanxi, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
elliptic curve; integer point; Diophantine equation;
D O I
10.1186/1029-242X-2014-104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and r be a fixed positive integer. Further let N(p(2r)) denote the number of pairs of integer points (x, +/- y) on the elliptic curve E : y(2) = x(3) + p(2r)x with y > 0. Using some properties of Diophantine equations, we give a sharper upper bound estimate for N(p(2r)). That is, we prove that N(p(2r)) <= 1, except with N(17(2(2s+ 1))) = 2, where s is a nonnegative integer.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] The integral points on elliptic curves y2 = x3 + (36n2 − 9)x − 2(36n2 − 5)
    Hai Yang
    Ruiqin Fu
    Czechoslovak Mathematical Journal, 2013, 63 : 375 - 383
  • [22] THE TORSION SUBGROUP OF THE ELLIPTIC CURVE Y2 = X3
    Dimabayao, Jerome T.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2020, 63 (02) : 137 - 149
  • [23] 3-Selmer groups for curves y2 = x3 + a
    Andrea Bandini
    Czechoslovak Mathematical Journal, 2008, 58 : 429 - 445
  • [24] CORRIGENDUM ON "THE NUMBER OF POINTS ON ELLIPTIC CURVES E : y(2) = x(3)
    Inam, Ilker
    Soydan, Gokhan
    Demirci, Musa
    BiZim, Osman
    Cangul, Ismail Naci
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 22 (02): : 207 - 208
  • [25] NUMBER OF COPRIME SOLUTIONS OF Y2 = X3 + K
    STEPHENS, NM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (02) : 325 - 327
  • [26] Sharp bounds for the number of integral points on y2 = x3 ± 2tx2 + tpx
    Lin, Nuan
    Walsh, P. Gary
    Yuan, Pingzhi
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 455 - 465
  • [27] Integral points on the elliptic curve Epq: y2 = x3 + (pq − 12) x − 2(pq − 8)
    Teng Cheng
    Qingzhong Ji
    Hourong Qin
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 343 - 352
  • [28] Integral Points on the Elliptic Curve y2 = x3-4p2x
    Yang, Hai
    Fu, Ruiqin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (03) : 853 - 862
  • [29] LANG'S CONJECTURE AND SHARP HEIGHT ESTIMATES FOR THE ELLIPTIC CURVES y2 = x3 + ax
    Voutier, Paul
    Yabuta, Minoru
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1141 - 1170
  • [30] Lang's conjecture and sharp height estimates for the elliptic curves y2 = x3 + b
    Voutier, Paul
    Yabuta, Minoru
    ACTA ARITHMETICA, 2016, 173 (03) : 197 - 224