The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx

被引:0
|
作者
Zhang, Jin [1 ]
Li, Xiaoxue [2 ]
机构
[1] Univ Arts & Sci, Sch Math & Comp Engn, Xian, Shaanxi, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
elliptic curve; integer point; Diophantine equation;
D O I
10.1186/1029-242X-2014-104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and r be a fixed positive integer. Further let N(p(2r)) denote the number of pairs of integer points (x, +/- y) on the elliptic curve E : y(2) = x(3) + p(2r)x with y > 0. Using some properties of Diophantine equations, we give a sharper upper bound estimate for N(p(2r)). That is, we prove that N(p(2r)) <= 1, except with N(17(2(2s+ 1))) = 2, where s is a nonnegative integer.
引用
收藏
页数:6
相关论文
共 50 条