The upper bound estimate of the number of integer points on elliptic curves y2 = x3 + p2rx

被引:0
|
作者
Zhang, Jin [1 ]
Li, Xiaoxue [2 ]
机构
[1] Univ Arts & Sci, Sch Math & Comp Engn, Xian, Shaanxi, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
关键词
elliptic curve; integer point; Diophantine equation;
D O I
10.1186/1029-242X-2014-104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime and r be a fixed positive integer. Further let N(p(2r)) denote the number of pairs of integer points (x, +/- y) on the elliptic curve E : y(2) = x(3) + p(2r)x with y > 0. Using some properties of Diophantine equations, we give a sharper upper bound estimate for N(p(2r)). That is, we prove that N(p(2r)) <= 1, except with N(17(2(2s+ 1))) = 2, where s is a nonnegative integer.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The upper bound estimate of the number of integer points on elliptic curves y2=x3+p2rx
    Jin Zhang
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014
  • [2] An exact upper bound estimate for the number of integer points on the elliptic curves y2=x3−pkx
    Su Gou
    Xiaoxue Li
    Journal of Inequalities and Applications, 2014
  • [3] An exact upper bound estimate for the number of integer points on the elliptic curves y2 = x3 - pkx
    Gou, Su
    Li, Xiaoxue
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [4] THE NUMBER OF POINTS ON ELLIPTIC CURVES y2 = x(3)
    Jeon, Wonju
    Kim, Daeyeoul
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 433 - 447
  • [5] Generators and integer points on the elliptic curve y2 = x3 - nx
    Fujita, Yasutsugu
    Terai, Nobuhiro
    ACTA ARITHMETICA, 2013, 160 (04) : 333 - 348
  • [6] Integer points on the curve Y2 = X3 ± pkX
    Draziotis, Konstantinos A.
    MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1493 - 1505
  • [7] ON THE NUMBER OF INTEGER POINTS ON THE ELLIPTIC CURVE y2 = x3+Ax
    Draziotis, Konstantinos A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (03) : 611 - 621
  • [8] FAMILY OF ELLIPTIC CURVES E(p,q) : y2 = x3 - p2x
    Khazali, Mehrdad
    Daghigh, Hassan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (04): : 805 - 813
  • [9] Integral Points on the Elliptic Curve y2 = x3 − 4p2x
    Hai Yang
    Ruiqin Fu
    Czechoslovak Mathematical Journal, 2019, 69 : 853 - 862
  • [10] On the family of elliptic curves y2 = x3 - m2x + p2
    Juyal, Abhishek
    Kumar, Shiv Datt
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (05):