Curvature of random walks and random polygons in confinement

被引:3
|
作者
Diao, Y. [1 ]
Ernst, C. [2 ]
Montemayor, A. [2 ]
Ziegler, U. [2 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Western Kentucky Univ, Dept Math & Comp Sci, Bowling Green, KY 42101 USA
基金
美国国家科学基金会;
关键词
TOTAL TORSION;
D O I
10.1088/1751-8113/46/28/285201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from pi/2 to pi. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Generating random walks and polygons with stiffness in confinement
    Diao, Y.
    Ernst, C.
    Saarinen, S.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (09)
  • [2] Total curvature and total torsion of knotted random polygons in confinement
    Diao, Yuanan
    Ernst, Claus
    Rawdon, Eric J.
    Ziegler, Uta
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (15)
  • [3] Generating equilateral random polygons in confinement
    Diao, Y.
    Ernst, C.
    Montemayor, A.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (40)
  • [4] THE EXPECTED TOTAL CURVATURE OF RANDOM POLYGONS
    Cantarella, Jason
    Grosberg, Alexander Y.
    Kusner, Robert
    Shonkwiler, Clayton
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (02) : 411 - 438
  • [5] Generating equilateral random polygons in confinement III
    Diao, Y.
    Ernst, C.
    Montemayor, A.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)
  • [6] Generating equilateral random polygons in confinement II
    Diao, Y.
    Ernst, C.
    Montemayor, A.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (27)
  • [7] The average crossing number of Gaussian random walks and polygons
    Diao, YN
    Ernst, C
    PHYSICAL AND NUMERICAL MODELS IN KNOT THEORY, 2005, 36 : 275 - 292
  • [8] KNOTS, SLIPKNOTS, AND EPHEMERAL KNOTS IN RANDOM WALKS AND EQUILATERAL POLYGONS
    Millett, Kenneth C.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2010, 19 (05) : 601 - 615
  • [9] Are random walks random?
    Nogues, J
    Costa-Kramer, JL
    Rao, KV
    PHYSICA A, 1998, 250 (1-4): : 327 - 334
  • [10] Average crossing number and writhe of knotted random polygons in confinement
    Diao, Yuanan
    Ernst, Claus
    Rawdon, Eric J.
    Ziegler, Uta
    REACTIVE & FUNCTIONAL POLYMERS, 2018, 131 : 430 - 444