KNOTS, SLIPKNOTS, AND EPHEMERAL KNOTS IN RANDOM WALKS AND EQUILATERAL POLYGONS

被引:15
|
作者
Millett, Kenneth C. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Knots; slipknots; random walks; equilateral polygons; SELF-AVOIDING WALKS; ENTANGLEMENT COMPLEXITY; SCALING BEHAVIOR; TOPOLOGY; PROTEINS; POLYMER; SPACE;
D O I
10.1142/S0218216510008078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The probability that a random walk or polygon in the 3-space or in the simple cubic lattice contains a knot goes to one at the length goes to infinity. Here, we prove that this is also true for slipknots consisting of unknotted portions, called the slipknot, that contain a smaller knotted portion, called the ephemeral knot. As is the case with knots, we prove that any topological knot type occurs as the ephemeral knotted portion of a slipknot.
引用
收藏
页码:601 / 615
页数:15
相关论文
共 50 条
  • [1] The Length Scale of 3-Space Knots, Ephemeral Knots, and Slipknots in Random Walks
    Millett, Kenneth C.
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (191): : 182 - 191
  • [2] Scaling of the average crossing number in equilateral random walks, knots and proteins
    Dobay, A
    Dubochet, J
    Stasiak, A
    Diao, YN
    PHYSICAL AND NUMERICAL MODELS IN KNOT THEORY, 2005, 36 : 219 - 231
  • [3] KNOTS IN RANDOM-WALKS
    PIPPENGER, N
    DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) : 273 - 278
  • [4] Statistics of knots and entangled random walks
    Nechaev, S
    TOPOLOGICAL ASPECTS OF LOW DIMENSIONAL SYSTEMS, 2000, 69 : 643 - 733
  • [5] Designing tie knots by random walks
    Thomas M. Fink
    Yong Mao
    Nature, 1999, 398 : 31 - 32
  • [6] Designing tie knots by random walks
    Fink, TM
    Mao, Y
    NATURE, 1999, 398 (6722) : 31 - 32
  • [7] Tie knots, random walks and topology
    Fink, TMA
    Mao, Y
    PHYSICA A, 2000, 276 (1-2): : 109 - 121
  • [8] FRACTIONS OF PARTICULAR KNOTS IN GAUSSIAN RANDOM POLYGONS
    TSURUSAKI, K
    DEGUCHI, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (05) : 1506 - 1518
  • [9] KnotProt: a database of proteins with knots and slipknots
    Jamroz, Michal
    Niemyska, Wanda
    Rawdon, Eric J.
    Stasiak, Andrzej
    Millett, Kenneth C.
    Sulkowski, Piotr
    Sulkowska, Joanna I.
    NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D306 - D314
  • [10] Knots and random walks in vibrated granular chains
    Ben-Naim, E
    Daya, ZA
    Vorobieff, P
    Ecke, RE
    PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1414 - 1417