KNOTS, SLIPKNOTS, AND EPHEMERAL KNOTS IN RANDOM WALKS AND EQUILATERAL POLYGONS

被引:15
|
作者
Millett, Kenneth C. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Knots; slipknots; random walks; equilateral polygons; SELF-AVOIDING WALKS; ENTANGLEMENT COMPLEXITY; SCALING BEHAVIOR; TOPOLOGY; PROTEINS; POLYMER; SPACE;
D O I
10.1142/S0218216510008078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The probability that a random walk or polygon in the 3-space or in the simple cubic lattice contains a knot goes to one at the length goes to infinity. Here, we prove that this is also true for slipknots consisting of unknotted portions, called the slipknot, that contain a smaller knotted portion, called the ephemeral knot. As is the case with knots, we prove that any topological knot type occurs as the ephemeral knotted portion of a slipknot.
引用
收藏
页码:601 / 615
页数:15
相关论文
共 50 条
  • [41] Predicting optimal lengths of random knots
    Dobay, A
    Sottas, PE
    Dubochet, J
    Stasiak, A
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 55 (03) : 239 - 247
  • [42] The Writhe of Permutations and Random Framed Knots
    Even-Zohar, Chaim
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (01) : 121 - 142
  • [43] COMPLEXITY-MEASURES FOR RANDOM KNOTS
    SUMNERS, DW
    COMPUTERS & CHEMISTRY, 1990, 14 (04): : 275 - 279
  • [44] Relative Frequencies of Alternating and Nonalternating Prime Knots and Composite Knots in Random Knot Spaces
    Diao, Yuanan
    Ernst, Claus
    Rawdon, Eric J.
    Ziegler, Uta
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 454 - 471
  • [45] Predicting Optimal Lengths of Random Knots
    Akos Dobay
    Pierre-Edouard Sottas
    Jacques Dubochet
    Andrzej Stasiak
    Letters in Mathematical Physics, 2001, 55 : 239 - 247
  • [46] Ranking knots of random, globular polymer rings
    Baiesi, M.
    Orlandini, E.
    Stella, A. L.
    PHYSICAL REVIEW LETTERS, 2007, 99 (05)
  • [47] Mean unknotting times of random knots and embeddings
    Chan, Yao-ban
    Owczarek, Aleksander L.
    Rechnitzer, Andrew
    Slade, Gordon
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [48] Adaptive Priors Based on Splines with Random Knots
    Belitser, Eduard
    Serra, Paulo
    BAYESIAN ANALYSIS, 2014, 9 (04): : 859 - 881
  • [49] Generating random walks and polygons with stiffness in confinement
    Diao, Y.
    Ernst, C.
    Saarinen, S.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (09)
  • [50] Sampling large random knots in a confined space
    Arsuaga, J.
    Blackstone, T.
    Diao, Y.
    Hinson, K.
    Karadayi, E.
    Saito, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (39) : 11697 - 11711