Curvature of random walks and random polygons in confinement

被引:3
|
作者
Diao, Y. [1 ]
Ernst, C. [2 ]
Montemayor, A. [2 ]
Ziegler, U. [2 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Western Kentucky Univ, Dept Math & Comp Sci, Bowling Green, KY 42101 USA
基金
美国国家科学基金会;
关键词
TOTAL TORSION;
D O I
10.1088/1751-8113/46/28/285201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from pi/2 to pi. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Random walks on random Koch curves
    Seeger, S.
    Hoffmann, K. H.
    Essex, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (22)
  • [42] Simulating Random Walks in Random Streams
    Kallaugher, John
    Kapralov, Michael
    Price, Eric
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3091 - 3126
  • [43] Biased random walks on random graphs
    Ben Arous, Gerard
    Fribergh, Alexander
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 99 - 153
  • [44] Disconnection, random walks, and random interlacements
    Alain-Sol Sznitman
    Probability Theory and Related Fields, 2017, 167 : 1 - 44
  • [45] Disconnection, random walks, and random interlacements
    Sznitman, Alain-Sol
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) : 1 - 44
  • [46] On the speed of random walks on random trees
    Konsowa, Mokhtar H.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (20) : 2230 - 2236
  • [47] Random walks on random simple graphs
    Hildebrand, M
    RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (04) : 301 - 318
  • [48] Random Walks in Degenerate Random Environments
    Holmes, Mark
    Salisbury, Thomas S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (05): : 1050 - 1077
  • [49] On the meeting of random walks on random DFA
    Quattropani, Matteo
    Sau, Federico
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 166
  • [50] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689