Curvature of random walks and random polygons in confinement

被引:3
|
作者
Diao, Y. [1 ]
Ernst, C. [2 ]
Montemayor, A. [2 ]
Ziegler, U. [2 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Western Kentucky Univ, Dept Math & Comp Sci, Bowling Green, KY 42101 USA
基金
美国国家科学基金会;
关键词
TOTAL TORSION;
D O I
10.1088/1751-8113/46/28/285201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from pi/2 to pi. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01): : 456 - 490
  • [22] Random walks and random permutations
    Forrester, PJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (31): : L417 - L423
  • [23] On random walks and switched random walks on homogeneous spaces
    Moreno, Elvira
    Velasco, Mauricio
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 398 - 421
  • [24] Book review: Random Walks and Random Environments Volume I: Random Walks
    Hughes, Barry D.
    Australian and New Zealand Physicist, 1996, 33 (03):
  • [25] Generating equilateral random polygons in confinement (vol 44, 405202, 2011)
    Diao, Y.
    Ernst, C.
    Montemayor, A.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (44)
  • [26] RANDOM WALKS
    PHATARFOD, RM
    SPEED, TP
    WALKER, AM
    JOURNAL OF APPLIED PROBABILITY, 1971, 8 (01) : 198 - +
  • [27] Random walks
    Slade, G
    AMERICAN SCIENTIST, 1996, 84 (02) : 146 - 153
  • [28] RANDOM-WALKS ON RANDOM TREES
    MOON, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A34 - &
  • [29] Random Walks with Invariant Loop Probabilities: Stereographic Random Walks
    Montero, Miquel
    ENTROPY, 2021, 23 (06)
  • [30] Diffusivity of a random walk on random walks
    Boissard, Emmanuel
    Cohen, Serge
    Espinasse, Thibault
    Norris, James
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (02) : 267 - 283