Harmonicity of unit vector fields with respect to Riemannian g-natural metrics

被引:24
|
作者
Abbassi, M. T. K. [2 ]
Calvaruso, G. [1 ]
Perrone, D. [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[2] Univ Sidi Mohamed Ben Abdallah, Dept Math, Fac Sci Dhart El Mahraz, Fes, Fes, Morocco
关键词
Harmonic vector fields; Unit tangent sphere bundle; g-natural metrics; Reeb vector field; MANIFOLDS; 3-MANIFOLDS; MAPPINGS; BUNDLES; ENERGY;
D O I
10.1016/j.difgeo.2008.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a compact Riemannian manifold and T1M its unit tangent sphere bundle. Unit vector fields defining harmonic maps from (M, g) to (T1M, (g) over bar (s)), (g) over bar (s) being the Sasaki metric on T1M, have been extensively studied. The Sasaki metric, and other well known Riemannian metrics on T1M, are particular examples of g-natural metrics. We equip T1M with an arbitrary Riemannian g-natural metric (G) over bar, anti investigate the harmonicity of a unit vector field V of M, thought as a map from (M, g) to (T1M, (G) over bar). We then apply this study to characterize unit Killing vector fields and to investigate harmonicity properties of the Reeb vector field of a contact metric manifold. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 49 条
  • [31] Bochner flatness of tangent bundles with g-natural almost Hermitian metrics
    Blair, David E.
    Yildirim, Handan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (03) : 259 - 269
  • [32] Einstein Finsler metrics and killing vector fields on Riemannian manifolds
    Cheng XinYue
    Shen ZhongMin
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 83 - 98
  • [33] Einstein Finsler metrics and killing vector fields on Riemannian manifolds
    XinYue Cheng
    ZhongMin Shen
    Science China Mathematics, 2017, 60 : 83 - 98
  • [34] Einstein Finsler metrics and Killing vector fields on Riemannian manifolds
    CHENG XinYue
    SHEN ZhongMin
    ScienceChina(Mathematics), 2017, 60 (01) : 83 - 98
  • [35] PROJECTIVE VECTOR FIELDS ON THE TANGENT BUNDLE WITH A CLASS OF RIEMANNIAN METRICS
    Gezer, Aydin
    Bilen, Lokman
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (05): : 587 - 596
  • [36] Killing Vector Fields of Generic Semi-Riemannian Metrics
    Castrillon Lopez, M.
    Munoz Masque, J.
    Rosado Maria, E.
    MILAN JOURNAL OF MATHEMATICS, 2015, 83 (01) : 47 - 54
  • [37] Killing Vector Fields of Generic Semi-Riemannian Metrics
    M. Castrillón López
    J. Muñoz Masqué
    E. Rosado María
    Milan Journal of Mathematics, 2015, 83 : 47 - 54
  • [38] Harmonic and minimal unit vector fields on Riemannian symmetric spaces
    Berndt, J
    Vanhecke, L
    Verhóczki, L
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1273 - 1286
  • [39] On extrinsic geometry of unit normal vector fields of Riemannian hyperfoliations
    Yampolsky, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 63 (04): : 555 - 567
  • [40] Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds
    Gil-Medrano, O
    González-Dávila, JC
    Vanhecke, L
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (02): : 377 - 409