Bochner flatness of tangent bundles with g-natural almost Hermitian metrics

被引:0
|
作者
Blair, David E. [1 ]
Yildirim, Handan [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Istanbul Univ, Fac Sci, Dept Math, TR-34134 Vezneciler, Fatih Istanbul, Turkey
关键词
CONFORMAL FLATNESS; MANIFOLDS;
D O I
10.1007/s10455-015-9491-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider g-natural metrics on the tangent bundle of a Riemannian manifold together with the almost complex structure which reverses the horizontal and vertical subspaces. This narrows the class of g-natural metrics to metrics conformally equivalent to the Sasaki metric on the tangent bundle with a restriction on the conformal factor. We then show that such a g-natural almost Hermitian structure is Bochner flat if and only if it is conformally equivalent to the Sasaki metric when the base manifold is flat and with the same restriction on the conformal factor.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 50 条
  • [1] Bochner flatness of tangent bundles with g-natural almost Hermitian metrics
    David E. Blair
    Handan Yıldırım
    Annals of Global Analysis and Geometry, 2016, 49 : 259 - 269
  • [2] g-NATURAL METRICS ON TANGENT BUNDLES AND JACOBI OPERATORS
    Degla, S.
    Todjihounde, L.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2011, 80 (02): : 255 - 269
  • [3] g-NATURAL METRICS OF CONSTANT SECTIONAL CURVATURE ON TANGENT BUNDLES
    Degla, S.
    Ezin, J. -P.
    Todjihounde, L.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2009, 2 (01): : 74 - 94
  • [4] Weakly symmetry of a class of g-natural metrics on tangent bundles
    E. Peyghan
    Journal of Contemporary Mathematical Analysis, 2016, 51 : 167 - 172
  • [5] g-natural contact metrics on unit tangent sphere bundles
    Abbassi, M. T. K.
    Calvaruso, G.
    MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02): : 89 - 109
  • [6] Weakly Symmetry of a Class of g-Natural Metrics on Tangent Bundles
    Peyghan, E.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2016, 51 (04): : 167 - 172
  • [7] g-Natural Contact Metrics on Unit Tangent Sphere Bundles
    M. T. K. Abbassi
    G. Calvaruso
    Monatshefte für Mathematik, 2007, 151 : 89 - 109
  • [8] HARMONIC SECTIONS OF TANGENT BUNDLES EQUIPPED WITH RIEMANNIAN g-NATURAL METRICS
    Abbassi, M. T. K.
    Calvaruso, G.
    Perrone, D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02): : 259 - 288
  • [9] g-NATURAL METRICS OF CONSTANT CURVATURE ON UNIT TANGENT SPHERE BUNDLES
    Abbassi, M. T. K.
    Calvaruso, G.
    ARCHIVUM MATHEMATICUM, 2012, 48 (02): : 81 - 95
  • [10] On Einstein Riemannian g-natural metrics on unit tangent sphere bundles
    Mohamed Tahar Kadaoui Abbassi
    Oldřich Kowalski
    Annals of Global Analysis and Geometry, 2010, 38 : 11 - 20