Harmonicity of unit vector fields with respect to Riemannian g-natural metrics

被引:24
|
作者
Abbassi, M. T. K. [2 ]
Calvaruso, G. [1 ]
Perrone, D. [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[2] Univ Sidi Mohamed Ben Abdallah, Dept Math, Fac Sci Dhart El Mahraz, Fes, Fes, Morocco
关键词
Harmonic vector fields; Unit tangent sphere bundle; g-natural metrics; Reeb vector field; MANIFOLDS; 3-MANIFOLDS; MAPPINGS; BUNDLES; ENERGY;
D O I
10.1016/j.difgeo.2008.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g) be a compact Riemannian manifold and T1M its unit tangent sphere bundle. Unit vector fields defining harmonic maps from (M, g) to (T1M, (g) over bar (s)), (g) over bar (s) being the Sasaki metric on T1M, have been extensively studied. The Sasaki metric, and other well known Riemannian metrics on T1M, are particular examples of g-natural metrics. We equip T1M with an arbitrary Riemannian g-natural metric (G) over bar, anti investigate the harmonicity of a unit vector field V of M, thought as a map from (M, g) to (T1M, (G) over bar). We then apply this study to characterize unit Killing vector fields and to investigate harmonicity properties of the Reeb vector field of a contact metric manifold. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 49 条
  • [11] g-natural contact metrics on unit tangent sphere bundles
    Abbassi, M. T. K.
    Calvaruso, G.
    MONATSHEFTE FUR MATHEMATIK, 2007, 151 (02): : 89 - 109
  • [12] g-Natural Contact Metrics on Unit Tangent Sphere Bundles
    M. T. K. Abbassi
    G. Calvaruso
    Monatshefte für Mathematik, 2007, 151 : 89 - 109
  • [13] g-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds
    Abbassi, M. T. K.
    NOTE DI MATEMATICA, 2008, 28 : 6 - 35
  • [14] g-NATURAL METRICS OF CONSTANT CURVATURE ON UNIT TANGENT SPHERE BUNDLES
    Abbassi, M. T. K.
    Calvaruso, G.
    ARCHIVUM MATHEMATICUM, 2012, 48 (02): : 81 - 95
  • [15] g-NATURAL METRICS ON THE COTANGENT BUNDLE
    Agca, Filiz
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 129 - 146
  • [16] Totally geodesic property of the unit tangent sphere bundle with g-natural metrics
    Peyghan, Esmaeil
    Firuzi, Farshad
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (01) : 152 - 166
  • [17] On Riemannian g-natural metrics of the form a.gs+b.gh+c.gv on the tangent bundle of a Riemannian manifold (M,g)
    Abbassi, Mohamed Tahar Kadaoui
    Sarih, Maati
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (01) : 19 - 43
  • [18] On Killing vector fields on a tangent bundle with g-natural metric Part I
    Ewert-Krzemieniewski, Stanislaw
    NOTE DI MATEMATICA, 2014, 34 (02): : 107 - 133
  • [19] Finsler manifolds with a special class of g-natural metrics
    E. Peyghan
    A. Tayebi
    Journal of Contemporary Mathematical Analysis, 2014, 49 : 260 - 269
  • [20] Finsler manifolds with a special class of g-natural metrics
    Peyghan, E.
    Tayebi, A.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (06): : 260 - 269