Multiple solutions for impulsive problems with non-autonomous perturbations

被引:54
|
作者
Liu, Jian [1 ]
Zhao, Zengqin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Non-autonomous perturbation; Variational method; Multiple solutions; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; VARIATIONAL APPROACH;
D O I
10.1016/j.aml.2016.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of multiple solutions for nonlinear impulsive problems with small non-autonomous perturbations. We show the existence of at least three distinct classical solutions by using variational methods and a three critical points theorem. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [41] Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms
    Li, Yongkun
    Ye, Yuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 3190 - 3201
  • [42] Non-Trivial Solutions of Non-Autonomous Nabla Fractional Difference Boundary Value Problems
    Cabada, Alberto
    Dimitrov, Nikolay D.
    Jonnalagadda, Jagan Mohan
    SYMMETRY-BASEL, 2021, 13 (06):
  • [43] Non-autonomous right and left multiplicative perturbations and maximal regularity
    Achache, Mahdi
    Ouhabaz, El Maati
    STUDIA MATHEMATICA, 2018, 242 (01) : 1 - 29
  • [44] Dynamics of a stochastic non-autonomous phytoplankton-zooplankton system involving toxin-producing phytoplankton and impulsive perturbations
    Liu, He
    Dai, Chuanjun
    Yu, Hengguo
    Guo, Qing
    Li, Jianbing
    Hao, Aimin
    Kikuchi, Jun
    Zhao, Min
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 368 - 386
  • [45] PERSISTENCE AND EXTINCTION OF A NON-AUTONOMOUS LOGISTIC MODEL WITH RANDOM PERTURBATIONS
    Liu, Meng
    Wang, Ke
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (03) : 977 - 987
  • [46] The threshold of a non-autonomous SIRS epidemic model with stochastic perturbations
    Ji, Chunyan
    Jiang, Daqing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1773 - 1782
  • [47] Non-autonomous perturbations for a class of quasilinear elliptic equations on R
    Alves, M. J.
    Carriao, P. C.
    Miyagaki, O. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) : 186 - 203
  • [48] AN EXPONENTIAL INTEGRATOR FOR NON-AUTONOMOUS PARABOLIC PROBLEMS
    Hipp, David
    Hochbruck, Marlis
    Ostermann, Alexander
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 497 - 511
  • [49] Bounded solutions for non-autonomous parabolic equations
    Zhang, WN
    Stewart, I
    DYNAMICS AND STABILITY OF SYSTEMS, 1996, 11 (02): : 109 - 120
  • [50] THE NUMBER OF PERIODIC SOLUTIONS OF NON-AUTONOMOUS SYSTEMS
    CRONIN, J
    DUKE MATHEMATICAL JOURNAL, 1960, 27 (02) : 183 - 193