Multiple solutions for impulsive problems with non-autonomous perturbations

被引:54
|
作者
Liu, Jian [1 ]
Zhao, Zengqin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Non-autonomous perturbation; Variational method; Multiple solutions; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; VARIATIONAL APPROACH;
D O I
10.1016/j.aml.2016.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of multiple solutions for nonlinear impulsive problems with small non-autonomous perturbations. We show the existence of at least three distinct classical solutions by using variational methods and a three critical points theorem. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [31] Non-autonomous equations with unpredictable solutions
    Akhmet, Marat
    Fen, Mehmet Onur
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 657 - 670
  • [32] ON PERIODIC SOLUTIONS OF NON-AUTONOMOUS SYSTEMES
    AIZENGEN.PG
    VAINBERG, MM
    DOKLADY AKADEMII NAUK SSSR, 1965, 165 (02): : 255 - &
  • [33] Autonomous and Non-autonomous Unbounded Attractors in Evolutionary Problems
    Banaskiewicz, Jakub
    Carvalho, Alexandre N.
    Garcia-Fuentes, Juan
    Kalita, Piotr
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3481 - 3534
  • [34] Mild solutions of non-autonomous second order problems with nonlocal initial conditions
    Henriquez, Hernan R.
    Poblete, Veronica
    Pozo, Juan C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 1064 - 1083
  • [35] Concentration of solutions for non-autonomous double-phase problems with lack of compactness
    Zhang, Weiqiang
    Zuo, Jiabin
    Radulescu, Vicentiu D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [36] STABILITY AND FORWARD ATTRACTORS FOR NON-AUTONOMOUS IMPULSIVE SEMIDYNAMICAL SYSTEMS
    Bonotto, Everaldo de Mello
    Demuner, Daniela Paula
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (04) : 1979 - 1996
  • [37] Asymptotic behaviors of non-autonomous impulsive difference equation with delays
    Li, Bing
    Song, Qiankun
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (07) : 3423 - 3433
  • [38] A non-autonomous impulsive food-chain model with delays
    Baodan Tian
    Pengkai Zhang
    Jiamei Li
    Yong Zhang
    Liu Yang
    Advances in Difference Equations, 2019
  • [39] A non-autonomous impulsive food-chain model with delays
    Tian, Baodan
    Zhang, Pengkai
    Li, Jiamei
    Zhang, Yong
    Yang, Liu
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [40] Regularity for evolution equations with non-autonomous perturbations in Banach spaces
    Penz, Markus
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)