Multiple solutions for impulsive problems with non-autonomous perturbations

被引:54
|
作者
Liu, Jian [1 ]
Zhao, Zengqin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Non-autonomous perturbation; Variational method; Multiple solutions; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; VARIATIONAL APPROACH;
D O I
10.1016/j.aml.2016.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of multiple solutions for nonlinear impulsive problems with small non-autonomous perturbations. We show the existence of at least three distinct classical solutions by using variational methods and a three critical points theorem. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [21] NON-AUTONOMOUS IMPULSIVE CAUCHY PROBLEMS OF PARABOLIC TYPE INVOLVING NONLOCAL INITIAL CONDITIONS
    Wang, Rong-Nian
    Ezzinbi, Khalil
    Zhu, Peng-Xian
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (02) : 275 - 299
  • [22] INFINITELY MANY SOLUTIONS FOR NON-AUTONOMOUS SECOND-ORDER SYSTEMS WITH IMPULSIVE EFFECTS
    Li, Chun
    Li, Lin
    Yang, He
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (02): : 427 - 441
  • [23] N-species non-autonomous Lotka-Volterra competitive systems with delays and impulsive perturbations
    Zhang, Long
    Teng, Zhidong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3152 - 3169
  • [24] C1,α-solutions to non-autonomous anisotropic variational problems
    Michael Bildhauer
    Martin Fuchs
    Calculus of Variations and Partial Differential Equations, 2005, 24 : 309 - 340
  • [25] C1,α-solutions to non-autonomous anisotropic variational problems
    Bildhauer, M
    Fuchs, M
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (03) : 309 - 340
  • [26] INFINITELY MANY SOLUTIONS AND MORSE INDEX FOR NON-AUTONOMOUS ELLIPTIC PROBLEMS
    Korman, Philip
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 31 - 46
  • [27] Attractors for impulsive non-autonomous dynamical systems and their relations
    Bonotto, E. M.
    Bortolan, M. C.
    Caraballo, T.
    Collegari, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (06) : 3524 - 3550
  • [28] MULTIPLE NORMALIZED SOLUTIONS FOR THE NON-AUTONOMOUS p-LAPLACE EQUATION
    Chen, Jianqing
    Gao, Yuetian
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (08) : 1044 - 1063
  • [29] ON THE STABILITY IN VARIATION OF NON-AUTONOMOUS DIFFERENTIAL EQUATIONS WITH PERTURBATIONS
    Hammami, M. A.
    Hamlili, R.
    Zaitsev, V. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (02): : 222 - 247
  • [30] TOPOLOGICAL CONJUGACY FOR LIPSCHITZ PERTURBATIONS OF NON-AUTONOMOUS SYSTEMS
    Li, Ming-Chia
    Lyu, Ming-Jiea
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (09) : 5011 - 5024