HARDY TYPE INEQUALITY IN VARIABLE LEBESGUE SPACES

被引:0
|
作者
Rafeiro, Humberto [1 ]
Samko, Stefan [1 ]
机构
[1] Univ Algarve, Dept Matemat, P-8005139 Faro, Portugal
关键词
Hardy inequality; weighted spaces; variable exponent; GENERALIZED LEBESGUE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in variable exponent spaces where L-p(.)(Omega), where p(.) satisfies the log-condition and Omega is a bounded domain in R-n with the property that R-n\(Omega) over bar has the cone property, the validity of the Hardy type inequality parallel to 1/delta(x)(alpha)integral(Omega)phi(y)/vertical bar x-y vertical bar(n-alpha)dy parallel to(p(.)) <= C parallel to phi parallel to(p(.)), 0 < alpha < min (1, n/p(+)), where delta(x) is approximately equal to dist(x, partial derivative Omega), is equivalent to a certain property of the domain Omega expressed in terms of alpha and chi(Omega).
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [21] Hardy type inequalities in generalized grand Lebesgue spaces
    Restrepo, Joel E.
    Suragan, Durvudkhan
    ADVANCES IN OPERATOR THEORY, 2021, 6 (02)
  • [22] Hardy type inequalities in generalized grand Lebesgue spaces
    Joel E. Restrepo
    Durvudkhan Suragan
    Advances in Operator Theory, 2021, 6
  • [23] Hardy's Inequality on Hardy-Morrey Spaces with Variable Exponents
    Ho, Kwok-Pun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [24] LOCAL HARDY-LITTLEWOOD MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES
    Gogatishvili, A.
    Danelia, A.
    Kopaliani, T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02) : 229 - 244
  • [25] OPTIMAL ESTIMATES FOR THE FRACTIONAL HARDY OPERATOR ON VARIABLE EXPONENT LEBESGUE SPACES
    Mizuta, Yoshihiro
    Nekvinda, Ales
    Shimomura, Tetsu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 445 - 462
  • [26] On Holder’s Inequality in Lebesgue Spaces with Variable Order of Summability
    Burenkov V.I.
    Tararykova T.V.
    Journal of Mathematical Sciences, 2024, 278 (2) : 254 - 263
  • [27] Maximal operators on variable Lebesgue and Hardy spaces and applications in Fourier analysis
    Weisz, Ferenc
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (03): : 118 - 134
  • [28] Hardy-Littlewood-Sobolev Inequality on Mixed-Norm Lebesgue Spaces
    Chen, Ting
    Sun, Wenchang
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [29] SPECTRAL MULTIPLIER THEOREMS OF HORMANDER TYPE ON HARDY AND LEBESGUE SPACES
    Kunstmann, Peer Christian
    Uhl, Matthias
    JOURNAL OF OPERATOR THEORY, 2015, 73 (01) : 27 - 69
  • [30] THE HARDY TYPE INEQUALITY ON METRIC MEASURE SPACES
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Wu, Chuanxi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (06) : 1359 - 1380