HARDY TYPE INEQUALITY IN VARIABLE LEBESGUE SPACES

被引:0
|
作者
Rafeiro, Humberto [1 ]
Samko, Stefan [1 ]
机构
[1] Univ Algarve, Dept Matemat, P-8005139 Faro, Portugal
关键词
Hardy inequality; weighted spaces; variable exponent; GENERALIZED LEBESGUE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in variable exponent spaces where L-p(.)(Omega), where p(.) satisfies the log-condition and Omega is a bounded domain in R-n with the property that R-n\(Omega) over bar has the cone property, the validity of the Hardy type inequality parallel to 1/delta(x)(alpha)integral(Omega)phi(y)/vertical bar x-y vertical bar(n-alpha)dy parallel to(p(.)) <= C parallel to phi parallel to(p(.)), 0 < alpha < min (1, n/p(+)), where delta(x) is approximately equal to dist(x, partial derivative Omega), is equivalent to a certain property of the domain Omega expressed in terms of alpha and chi(Omega).
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [31] On a weighted inequality of Hardy type in spaces Lp(.)
    Mamedov, Farman I.
    Harman, Aziz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) : 521 - 530
  • [32] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64
  • [33] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Journal of Fourier Analysis and Applications, 2017, 23 : 21 - 64
  • [34] ON BOUNDEDNESS AND COMPACTNESS OF DISCRETE HARDY OPERATOR IN DISCRETE WEIGHTED VARIABLE LEBESGUE SPACES
    Bandaliyev, Rovshan A.
    Aliyeva, Dunya R.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (03): : 1215 - +
  • [35] Two-Weight Norm Inequality for the One-Sided Hardy-Littlewood Maximal Operators in Variable Lebesgue Spaces
    Niu, Caiyin
    Liu, Zongguang
    Wang, Panwang
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [36] COMPACT EMBEDDING DERIVATIVES OF HARDY SPACES INTO LEBESGUE SPACES
    Angel Pelaez, Jose
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) : 1095 - 1107
  • [37] EMBEDDING DERIVATIVES OF HARDY-SPACES INTO LEBESGUE SPACES
    LUECKING, DH
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1991, 63 : 595 - 619
  • [38] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664
  • [39] On a Hardy Type General Weighted Inequality in Spaces Lp(·)
    Farman I. Mamedov
    Aziz Harman
    Integral Equations and Operator Theory, 2010, 66 : 565 - 592
  • [40] On a Hardy Type General Weighted Inequality in Spaces Lp(.)
    Mamedov, Farman I.
    Harman, Aziz
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) : 565 - 592