SPECTRAL MULTIPLIER THEOREMS OF HORMANDER TYPE ON HARDY AND LEBESGUE SPACES

被引:34
|
作者
Kunstmann, Peer Christian [1 ]
Uhl, Matthias [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
Spectral multiplier theorems; Hardy spaces; non-negative self-adjoint operators; Davies-Gaffney estimates; spaces of homogeneous type; WEIGHTED NORM INEQUALITIES; ELLIPTIC-OPERATORS; L-P; RIESZ TRANSFORMS; BOUNDS; CONSERVATION; REGULARITY;
D O I
10.7900/jot.2013aug29.2038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a space of homogeneous type and let L be an injective, non-negative, self-adjoint operator on L-2(X) such that the semigroup generated by -L fulfills Davies-Gaffney estimates of arbitrary order. We prove that the operator F(L), initially defined on H-L(1)(X) boolean AND L2(X), acts as a bounded linear operator on the Hardy space H-L(1)(X) associated with L whenever F is a bounded, sufficiently smooth function. Based on this result, together with interpolation, we establish Hormander type spectral multiplier theorems on Lebesgue spaces for non-negative, self-adjoint operators satisfying generalized Gaussian estimates. In this setting our results improve previously known ones.
引用
收藏
页码:27 / 69
页数:43
相关论文
共 50 条
  • [1] Hormander type multiplier theorems on bi-parameter anisotropic Hardy spaces
    Huang, Liang
    Chen, Jiao
    FORUM MATHEMATICUM, 2020, 32 (03) : 577 - 594
  • [2] Multiplier theorems for Herz type hardy spaces
    Lu, S
    Yang, DC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) : 3337 - 3346
  • [3] Hormander Fourier multiplier theorems with optimal Besov regularity on multi-parameter Hardy spaces
    Chen, Jiao
    Huang, Liang
    Lu, Guozhen
    FORUM MATHEMATICUM, 2021, 33 (06) : 1605 - 1627
  • [4] REMARKS ON SPECTRAL MULTIPLIER THEOREMS ON HARDY SPACES ASSOCIATED WITH SEMIGROUPS OF OPERATORS
    Dziubanski, Jacek
    Preisner, Marcin
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2009, 50 (02): : 201 - 215
  • [5] UNIFYING MULTIPLIER THEOREMS OF HORMANDER, MARCINKIEWICZ, AND MICHLIN TYPE
    CONNETT, WC
    SCHWARTZ, AL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03) : 570 - 572
  • [6] Hormander Type Multipliers on Anisotropic Hardy Spaces
    Chen, Jiao
    Huang, Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (11) : 1841 - 1853
  • [7] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64
  • [8] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Journal of Fourier Analysis and Applications, 2017, 23 : 21 - 64
  • [9] HARDY TYPE INEQUALITY IN VARIABLE LEBESGUE SPACES
    Rafeiro, Humberto
    Samko, Stefan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (01) : 279 - 289
  • [10] On the Hormander multiplier theorem and modulation spaces
    Tomita, Naohito
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 26 (03) : 408 - 415