SPECTRAL MULTIPLIER THEOREMS OF HORMANDER TYPE ON HARDY AND LEBESGUE SPACES

被引:34
|
作者
Kunstmann, Peer Christian [1 ]
Uhl, Matthias [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
Spectral multiplier theorems; Hardy spaces; non-negative self-adjoint operators; Davies-Gaffney estimates; spaces of homogeneous type; WEIGHTED NORM INEQUALITIES; ELLIPTIC-OPERATORS; L-P; RIESZ TRANSFORMS; BOUNDS; CONSERVATION; REGULARITY;
D O I
10.7900/jot.2013aug29.2038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a space of homogeneous type and let L be an injective, non-negative, self-adjoint operator on L-2(X) such that the semigroup generated by -L fulfills Davies-Gaffney estimates of arbitrary order. We prove that the operator F(L), initially defined on H-L(1)(X) boolean AND L2(X), acts as a bounded linear operator on the Hardy space H-L(1)(X) associated with L whenever F is a bounded, sufficiently smooth function. Based on this result, together with interpolation, we establish Hormander type spectral multiplier theorems on Lebesgue spaces for non-negative, self-adjoint operators satisfying generalized Gaussian estimates. In this setting our results improve previously known ones.
引用
收藏
页码:27 / 69
页数:43
相关论文
共 50 条
  • [31] A spectral multiplier theorem for Hardy spaces associated with Schrodinger operator on the Heisenberg group
    Hu, Nan
    Zhao, Jiman
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (01)
  • [32] Abstract metric spaces and Hardy-Rogers-type theorems
    Radojevic, Slobodan
    Paunovic, Ljiljana
    Radenovic, Stojan
    APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 553 - 558
  • [33] Decomposition theorems for Hardy spaces on convex domains of finite type
    Grellier, S
    Peloso, MM
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (01) : 207 - 232
  • [34] A Hormander type multiplier theorem for multilinear operators
    Tomita, Naohito
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) : 2028 - 2044
  • [35] Some estimates of Schrödinger type operators on variable Lebesgue and Hardy spaces
    Junqiang Zhang
    Zongguang Liu
    Banach Journal of Mathematical Analysis, 2020, 14 : 336 - 360
  • [36] Some embedding theorems for Hormander-Beurling spaces
    Motos, Joaquin
    Jesus Planells, Maria
    Villegas G, Jairo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) : 473 - 482
  • [37] Hardy type operators on grand Lebesgue spaces for non-increasing functions
    Jain, Pankaj
    Singh, Monika
    Singh, Arun Pal
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2016, 170 (01) : 34 - 46
  • [38] Multiplier conditions for Boundedness into Hardy spaces
    Grafakos, Loukas
    Nakamura, Shohei
    Hanh Van Nguyen
    Sawano, Yoshihiro
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (03) : 1047 - 1064
  • [39] ON BOUNDEDNESS OF A CERTAIN CLASS OF HARDY-STEKLOV TYPE OPERATORS IN LEBESGUE SPACES
    Stepanov, V. D.
    Ushakova, E. P.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (01): : 28 - 52
  • [40] Wavelet Frame Bijectivity on Lebesgue and Hardy Spaces
    Bui, H. -Q.
    Laugesen, R. S.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (02) : 376 - 409