HARDY TYPE INEQUALITY IN VARIABLE LEBESGUE SPACES

被引:0
|
作者
Rafeiro, Humberto [1 ]
Samko, Stefan [1 ]
机构
[1] Univ Algarve, Dept Matemat, P-8005139 Faro, Portugal
关键词
Hardy inequality; weighted spaces; variable exponent; GENERALIZED LEBESGUE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in variable exponent spaces where L-p(.)(Omega), where p(.) satisfies the log-condition and Omega is a bounded domain in R-n with the property that R-n\(Omega) over bar has the cone property, the validity of the Hardy type inequality parallel to 1/delta(x)(alpha)integral(Omega)phi(y)/vertical bar x-y vertical bar(n-alpha)dy parallel to(p(.)) <= C parallel to phi parallel to(p(.)), 0 < alpha < min (1, n/p(+)), where delta(x) is approximately equal to dist(x, partial derivative Omega), is equivalent to a certain property of the domain Omega expressed in terms of alpha and chi(Omega).
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [1] CORRIGENDUM TO "HARDY TYPE INEQUALITY IN VARIABLE LEBESGUE SPACES"
    Rafeiro, Humberto
    Samko, Stefan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (02) : 679 - 680
  • [2] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    David Cruz-Uribe
    Farman I. Mamedov
    Revista Matemática Complutense, 2012, 25 : 335 - 367
  • [3] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    Cruz-Uribe, David
    Mamedov, Farman I.
    REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02): : 335 - 367
  • [4] On Hardy Inequality in Variable Lebesgue Spaces with Mixed Norm
    Bandaliyev, Rovshan A.
    Serbetci, Ayhan
    Hasanov, Sabir G.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (04): : 765 - 782
  • [5] On Hardy Inequality in Variable Lebesgue Spaces with Mixed Norm
    Rovshan A. Bandaliyev
    Ayhan Serbetci
    Sabir G. Hasanov
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 765 - 782
  • [6] Hardy Inequality in Variable Grand Lebesgue Spaces for Nonincreasing Functions
    M. Singh
    P. Jain
    Mathematical Notes, 2023, 113 : 282 - 291
  • [7] Hardy Inequality in Variable Grand Lebesgue Spaces for Nonincreasing Functions
    Singh, M.
    Jain, P.
    MATHEMATICAL NOTES, 2023, 113 (1-2) : 282 - 291
  • [8] Some estimates of Schrodinger type operators on variable Lebesgue and Hardy spaces
    Zhang, Junqiang
    Liu, Zongguang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 336 - 360
  • [9] On Hardy type inequality in variable exponent Lebesgue space Lp(.)(0, l)
    Mamedov, F. I.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (01): : 96 - 106
  • [10] ON WEIGHTED BERNSTEIN TYPE INEQUALITY IN GRAND VARIABLE EXPONENT LEBESGUE SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 991 - 1002