InterStoreDB: A Generic Integration Resource for Genetic and Genomic Data

被引:9
|
作者
Love, Christopher G. [1 ]
Andongabo, Ambrose E. [2 ]
Wang, Jun [3 ]
Carion, Pierre W. C. [2 ]
Rawlings, Christopher J. [2 ]
King, Graham J. [4 ]
机构
[1] Royal Melbourne Hosp, Med Res Ctr, Ludwig Inst Canc Res, Parkville, Vic 3050, Australia
[2] Rothamsted Res, Dept Biomath & Bioinformat, Harpenden AL5 2JQ, Herts, England
[3] Queen Mary Univ London, London EC1M 6BQ, England
[4] So Cross Univ, Lismore, NSW 2480, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
QTL; bioinformatics; databases; BRASSICA-NAPUS; INFORMATION; EXPRESSION; ONTOLOGIES; SEQUENCE; FUTURE; TRAIT;
D O I
10.1111/j.1744-7909.2012.01120.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research. InterStoreDB is a suite of integrated databases designed to assist in this process. The individual databases are species independent and generic in design, providing access to curated datasets relating to plant populations, phenotypic traits, genetic maps, marker loci and QTL, with links to functional gene annotation and genomic sequence data. Each component database provides access to associated metadata, including data provenance and parameters used in analyses, thus providing users with information to evaluate the relative worth of any associations identified. The databases include CropStoreDB, for management of population, genetic map, QTL and trait measurement data, SeqStoreDB for sequence-related data and AlignStoreDB, which stores sequence alignment information, and allows navigation between genetic and genomic datasets. Genetic maps are visualized and compared using the CMAP tool, and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser. This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal. We demonstrate the value of InterStoreDB as a tool for Brassica research. InterStoreDB is available from:
引用
收藏
页码:345 / 355
页数:11
相关论文
共 50 条
  • [41] Statistical Analysis of Massive Genetic and Genomic Data in Genetic Epidemiology
    Lin, Xihong
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 565 - 565
  • [42] Assessing the Integration of Genomic Medicine in Genetic Counseling Training Programs
    Profato, Jessica
    Gordon, Erynn S.
    Dixon, Shannan
    Kwan, Andrea
    JOURNAL OF GENETIC COUNSELING, 2014, 23 (04) : 679 - 688
  • [43] Predicting clinical outcomes in neuroblastoma with genomic data integration
    Baali, Ilyes
    Acar, D. Alp Emre
    Aderinwale, Tunde W.
    HafezQorani, Saber
    Kazan, Hilal
    BIOLOGY DIRECT, 2018, 13
  • [44] GeneBrowser: an approach for integration and functional classification of genomic data
    Arrais, Joel
    Santos, Bruno
    Fernandes, Joao
    Carreto, Laura
    Santos, Manuel A. S.
    Oliveira, Jose Luis
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2007, 4 (03)
  • [45] Predicting clinical outcomes in neuroblastoma with genomic data integration
    Ilyes Baali
    D Alp Emre Acar
    Tunde W. Aderinwale
    Saber HafezQorani
    Hilal Kazan
    Biology Direct, 13
  • [46] Genomic data integration - application to understanding the biology of glioblastoma
    Kashivan, R.
    Park, J. D.
    Wasnikar, V.
    Shahinian', R.
    Shams, S.
    EJC SUPPLEMENTS, 2008, 6 (09): : 118 - 118
  • [47] Structured Matrix Completion with Applications to Genomic Data Integration
    Cai, Tianxi
    Cai, T. Tony
    Zhang, Anru
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 621 - 633
  • [48] Genomic data integration tutorial, a plant case study
    Mardoc, Emile
    Sow, Mamadou Dia
    Dejean, Sebastien
    Salse, Jerome
    BMC GENOMICS, 2024, 25 (01)
  • [49] Genomic data integration systematically biases interactome mapping
    Skinnider, Michael A.
    Stacey, R. Greg
    Foster, Leonard J.
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (10)
  • [50] Genomic data integration tutorial, a plant case study
    Emile Mardoc
    Mamadou Dia Sow
    Sébastien Déjean
    Jérôme Salse
    BMC Genomics, 25