InterStoreDB: A Generic Integration Resource for Genetic and Genomic Data

被引:9
|
作者
Love, Christopher G. [1 ]
Andongabo, Ambrose E. [2 ]
Wang, Jun [3 ]
Carion, Pierre W. C. [2 ]
Rawlings, Christopher J. [2 ]
King, Graham J. [4 ]
机构
[1] Royal Melbourne Hosp, Med Res Ctr, Ludwig Inst Canc Res, Parkville, Vic 3050, Australia
[2] Rothamsted Res, Dept Biomath & Bioinformat, Harpenden AL5 2JQ, Herts, England
[3] Queen Mary Univ London, London EC1M 6BQ, England
[4] So Cross Univ, Lismore, NSW 2480, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
QTL; bioinformatics; databases; BRASSICA-NAPUS; INFORMATION; EXPRESSION; ONTOLOGIES; SEQUENCE; FUTURE; TRAIT;
D O I
10.1111/j.1744-7909.2012.01120.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research. InterStoreDB is a suite of integrated databases designed to assist in this process. The individual databases are species independent and generic in design, providing access to curated datasets relating to plant populations, phenotypic traits, genetic maps, marker loci and QTL, with links to functional gene annotation and genomic sequence data. Each component database provides access to associated metadata, including data provenance and parameters used in analyses, thus providing users with information to evaluate the relative worth of any associations identified. The databases include CropStoreDB, for management of population, genetic map, QTL and trait measurement data, SeqStoreDB for sequence-related data and AlignStoreDB, which stores sequence alignment information, and allows navigation between genetic and genomic datasets. Genetic maps are visualized and compared using the CMAP tool, and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser. This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal. We demonstrate the value of InterStoreDB as a tool for Brassica research. InterStoreDB is available from:
引用
收藏
页码:345 / 355
页数:11
相关论文
共 50 条
  • [21] HIBLUP: an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data
    Yin, Lilin
    Zhang, Haohao
    Tang, Zhenshuang
    Yin, Dong
    Fu, Yuhua
    Yuan, Xiaohui
    Li, Xinyun
    Liu, Xiaolei
    Zhao, Shuhong
    NUCLEIC ACIDS RESEARCH, 2023, 51 (08) : 3501 - 3512
  • [22] Integration of Genomic and Proteomic Data to Predict Synthetic Genetic Interactions Using Semi-supervised Learning
    You, Zhuhong
    Zhang, Shanwen
    Li, Liping
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2009, 5755 : 635 - +
  • [23] Data integration in cardiac surgery and resource management
    Taddei, A
    Dalmiani, S
    Piccini, G
    Vellani, A
    Carducci, T
    Buffa, M
    Scebba, L
    Glauber, M
    Murzi, B
    Biagini, A
    Macerata, A
    COMPUTERS IN CARDIOLOGY 2003, VOL 30, 2003, 30 : 279 - 282
  • [24] EUPATHDB: A POWERFUL EUKARYOTIC PATHOGEN GENOMIC AND FUNCTIONAL GENOMIC DATA MINING RESOURCE
    Warrenfeltz, Susanne
    Brunk, Brian
    Harb, Omar
    Kissinger, Jessica
    Roos, David
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2017, 95 (05): : 503 - 503
  • [25] Image Data Resource: a bioimage data integration and publication platform
    Williams, Eleanor
    Moore, Josh
    Li, Simon W.
    Rustici, Gabriella
    Tarkowska, Aleksandra
    Chessel, Anatole
    Leo, Simone
    Antal, Balint
    Ferguson, Richard K.
    Sarkans, Ugis
    Brazma, Alvis
    Salas, Rafael E. Carazo
    Swedlow, Jason R.
    NATURE METHODS, 2017, 14 (08) : 775 - +
  • [26] Image Data Resource: A bioimage data integration and publication platform
    Williams E.
    Moore J.
    Li S.W.
    Rustici G.
    Tarkowska A.
    Chessel A.
    Leo S.
    Antal B.
    Ferguson R.K.
    Sarkans U.
    Brazma A.
    Carazo Salas R.E.
    Swedlow J.R.
    Nature Methods, 2017, 14 (8) : 775 - 781
  • [27] A genetic, genomic, and computational resource for exploring neural circuit function
    Davis, Fred P.
    Nern, Aljoscha
    Picard, Serge
    Reiser, Michael B.
    Rubin, Gerald M.
    Eddy, Sean R.
    Henry, Gilbert L.
    ELIFE, 2020, 9
  • [28] INTEGR8, a resource for proteomic and genomic data
    Pruess, M.
    Kersey, P.
    Apweiler, R.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S29 - S29
  • [29] EUPATHDB: AN INTEGRATED GENOMIC DATA RESOURCE FOR EUKARYOTIC PATHOGENS
    Warrenfeltz, Susanne W.
    Brunk, Brian P.
    Harb, Omar S.
    Kissinger, Jessica C.
    Roos, David S.
    Stoeckert, Christian J.
    Zheng, Jie
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2015, 93 (04): : 281 - 282
  • [30] The UK Biobank resource with deep phenotyping and genomic data
    Clare Bycroft
    Colin Freeman
    Desislava Petkova
    Gavin Band
    Lloyd T. Elliott
    Kevin Sharp
    Allan Motyer
    Damjan Vukcevic
    Olivier Delaneau
    Jared O’Connell
    Adrian Cortes
    Samantha Welsh
    Alan Young
    Mark Effingham
    Gil McVean
    Stephen Leslie
    Naomi Allen
    Peter Donnelly
    Jonathan Marchini
    Nature, 2018, 562 : 203 - 209