InterStoreDB: A Generic Integration Resource for Genetic and Genomic Data

被引:9
|
作者
Love, Christopher G. [1 ]
Andongabo, Ambrose E. [2 ]
Wang, Jun [3 ]
Carion, Pierre W. C. [2 ]
Rawlings, Christopher J. [2 ]
King, Graham J. [4 ]
机构
[1] Royal Melbourne Hosp, Med Res Ctr, Ludwig Inst Canc Res, Parkville, Vic 3050, Australia
[2] Rothamsted Res, Dept Biomath & Bioinformat, Harpenden AL5 2JQ, Herts, England
[3] Queen Mary Univ London, London EC1M 6BQ, England
[4] So Cross Univ, Lismore, NSW 2480, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
QTL; bioinformatics; databases; BRASSICA-NAPUS; INFORMATION; EXPRESSION; ONTOLOGIES; SEQUENCE; FUTURE; TRAIT;
D O I
10.1111/j.1744-7909.2012.01120.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research. InterStoreDB is a suite of integrated databases designed to assist in this process. The individual databases are species independent and generic in design, providing access to curated datasets relating to plant populations, phenotypic traits, genetic maps, marker loci and QTL, with links to functional gene annotation and genomic sequence data. Each component database provides access to associated metadata, including data provenance and parameters used in analyses, thus providing users with information to evaluate the relative worth of any associations identified. The databases include CropStoreDB, for management of population, genetic map, QTL and trait measurement data, SeqStoreDB for sequence-related data and AlignStoreDB, which stores sequence alignment information, and allows navigation between genetic and genomic datasets. Genetic maps are visualized and compared using the CMAP tool, and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser. This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal. We demonstrate the value of InterStoreDB as a tool for Brassica research. InterStoreDB is available from:
引用
收藏
页码:345 / 355
页数:11
相关论文
共 50 条
  • [31] GoMiner: a resource for biological interpretation of genomic and proteomic data
    Zeeberg, BR
    Feng, WM
    Wang, G
    Wang, MD
    Fojo, AT
    Sunshine, M
    Narasimhan, S
    Kane, DW
    Reinhold, WC
    Lababidi, S
    Bussey, KJ
    Riss, J
    Barrett, JC
    Weinstein, JN
    GENOME BIOLOGY, 2003, 4 (04)
  • [32] A community resource for paired genomic and metabolomic data mining
    Michelle A. Schorn
    Stefan Verhoeven
    Lars Ridder
    Florian Huber
    Deepa D. Acharya
    Alexander A. Aksenov
    Gajender Aleti
    Jamshid Amiri Moghaddam
    Allegra T. Aron
    Saefuddin Aziz
    Anelize Bauermeister
    Katherine D. Bauman
    Martin Baunach
    Christine Beemelmanns
    J. Michael Beman
    María Victoria Berlanga-Clavero
    Alex A. Blacutt
    Helge B. Bode
    Anne Boullie
    Asker Brejnrod
    Tim S. Bugni
    Alexandra Calteau
    Liu Cao
    Víctor J. Carrión
    Raquel Castelo-Branco
    Shaurya Chanana
    Alexander B. Chase
    Marc G. Chevrette
    Leticia V. Costa-Lotufo
    Jason M. Crawford
    Cameron R. Currie
    Bart Cuypers
    Tam Dang
    Tristan de Rond
    Alyssa M. Demko
    Elke Dittmann
    Chao Du
    Christopher Drozd
    Jean-Claude Dujardin
    Rachel J. Dutton
    Anna Edlund
    David P. Fewer
    Neha Garg
    Julia M. Gauglitz
    Emily C. Gentry
    Lena Gerwick
    Evgenia Glukhov
    Harald Gross
    Muriel Gugger
    Dulce G. Guillén Matus
    Nature Chemical Biology, 2021, 17 : 363 - 368
  • [33] A community resource for paired genomic and metabolomic data mining
    Schorn, Michelle A.
    Verhoeven, Stefan
    Ridder, Lars
    Huber, Florian
    Acharya, Deepa D.
    Aksenov, Alexander A.
    Aleti, Gajender
    Moghaddam, Jamshid Amiri
    Aron, Allegra T.
    Aziz, Saefuddin
    Bauermeister, Anelize
    Bauman, Katherine D.
    Baunach, Martin
    Beemelmanns, Christine
    Beman, J. Michael
    Berlanga-Clavero, Maria Victoria
    Blacutt, Alex A.
    Bode, Helge B.
    Boullie, Anne
    Brejnrod, Asker
    Bugni, Tim S.
    Calteau, Alexandra
    Cao, Liu
    Carrion, Victor J.
    Castelo-Branco, Raquel
    Chanana, Shaurya
    Chase, Alexander B.
    Chevrette, Marc G.
    Costa-Lotufo, Leticia V.
    Crawford, Jason M.
    Currie, Cameron R.
    Cuypers, Bart
    Dang, Tam
    de Rond, Tristan
    Demko, Alyssa M.
    Dittmann, Elke
    Du, Chao
    Drozd, Christopher
    Dujardin, Jean-Claude
    Dutton, Rachel J.
    Edlund, Anna
    Fewer, David P.
    Garg, Neha
    Gauglitz, Julia M.
    Gentry, Emily C.
    Gerwick, Lena
    Glukhov, Evgenia
    Gross, Harald
    Gugger, Muriel
    Guillen Matus, Dulce G.
    NATURE CHEMICAL BIOLOGY, 2021, 17 (04) : 363 - 368
  • [34] GoMiner: a resource for biological interpretation of genomic and proteomic data
    Barry R Zeeberg
    Weimin Feng
    Geoffrey Wang
    May D Wang
    Anthony T Fojo
    Margot Sunshine
    Sudarshan Narasimhan
    David W Kane
    William C Reinhold
    Samir Lababidi
    Kimberly J Bussey
    Joseph Riss
    J Carl Barrett
    John N Weinstein
    Genome Biology, 4
  • [35] Genomic data resource of type strains of genus Pseudoxanthomonas
    Bansal, Kanika
    Kumar, Sanjeet
    Patil, Prashant P.
    Sharma, Shikha
    Patil, Prabhu B.
    DATA IN BRIEF, 2022, 42
  • [36] The UK Biobank resource with deep phenotyping and genomic data
    Bycroft, Clare
    Freeman, Colin
    Petkova, Desislava
    Band, Gavin
    Elliott, Lloyd T.
    Sharp, Kevin
    Motyer, Allan
    Vukcevic, Damjan
    Delaneau, Olivier
    O'Connell, Jared
    Cortes, Adrian
    Welsh, Samantha
    Young, Alan
    Effingham, Mark
    McVean, Gil
    Leslie, Stephen
    Allen, Naomi
    Donnelly, Peter
    Marchini, Jonathan
    NATURE, 2018, 562 (7726) : 203 - +
  • [37] STAIRS:: a new genetic resource for functional genomic studies of Arabidopsis
    Koumproglou, R
    Wilkes, TM
    Townson, P
    Wang, XY
    Beynon, J
    Pooni, HS
    Newbury, HJ
    Kearsey, MJ
    PLANT JOURNAL, 2002, 31 (03): : 355 - 364
  • [38] TOWARDS A GENERIC MAPPING FOR IFC-CITYGML DATA INTEGRATION
    Tauscher, Helga
    ISPRS TC IV 3RD BIM/GIS INTEGRATION WORKSHOP AND 15TH 3D GEOINFO CONFERENCE 2020, 2020, 44-4 (W1): : 151 - 158
  • [39] A generic parallel processing model for facilitating data mining and integration
    Han, Liangxiu
    Liew, Chee Sun
    van Hemert, Jano
    Atkinson, Malcolm
    PARALLEL COMPUTING, 2011, 37 (03) : 157 - 171
  • [40] Generic and queryable data integration schema for transcriptomics and epigenomics studies
    Tirlet, Yael
    Boudet, Mateo
    Becker, Emmanuelle
    Legeai, Fabrice
    Dameron, Olivier
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 4232 - 4241