Imputing Missing Values for Mixed Numeric and Categorical Attributes Based on Incomplete Data Hierarchical Clustering

被引:0
|
作者
Feng, Xiaodong [1 ]
Wu, Sen [1 ]
Liu, Yanchi [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Econ & Management, Beijing 100083, Peoples R China
关键词
Mixed Numeric and Categorical Attributes; Missing Value Imputation; Hierarchical Clustering; Incomplete Set Mixed Feature Vector;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data imputation is a key issue of data pre-processing in data mining field. Though there are many methods for missing value imputation, almost each of these imputation methods has its limitation and is designed for either numeric attributes or categorical attributes. This paper presents IMIC, a new missing value Imputation method for Mixed numeric and categorical attributes based on Incomplete data hierarchical clustering after the introduction of a new concept Incomplete Set Mixed Feature Vector (ISMFV). The effect of the new method is valuated through the comparison experiment using 3 real data sets from UCI.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 50 条
  • [41] Clustering feature vectors with mixed numerical and categorical attributes
    Brouwer R.K.
    International Journal of Computational Intelligence Systems, 2008, 1 (4) : 285 - 298
  • [42] Topological Machine Learning for Mixed Numeric and Categorical Data
    Wu, Chengyuan
    Hargreaves, Carol Anne
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2021, 30 (05)
  • [43] Clustering feature vectors with mixed numerical and categorical attributes
    Brouwer, Roelof K.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2008, 1 (04) : 285 - 298
  • [44] A Hierarchical Clustering for Categorical Data Based on Holo-entropy
    Sun, Haojun
    Chen, Rongbo
    Jin, Shulin
    Qin, Yong
    2015 12TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA), 2015, : 269 - 274
  • [45] Holo-Entropy Based Categorical Data Hierarchical Clustering
    Sun, Haojun
    Chen, Rongbo
    Qin, Yong
    Wang, Shengrui
    INFORMATICA, 2017, 28 (02) : 303 - 328
  • [46] Hierarchical density-based clustering of categorical data and a simplification
    Andreopoulos, Bill
    An, Aijun
    Wang, Xiaogang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 11 - +
  • [47] Fuzzy C-Means clustering of incomplete data based on probabilistic information granules of missing values
    Zhang, Liyong
    Lu, Wei
    Liu, Xiaodong
    Pedrycz, Witold
    Zhong, Chongquan
    KNOWLEDGE-BASED SYSTEMS, 2016, 99 : 51 - 70
  • [48] A Matrix Completion Method for Imputing Missing Values of Process Data
    Zhang, Xinyu
    Sun, Xiaoyan
    Xia, Li
    Tao, Shaohui
    Xiang, Shuguang
    PROCESSES, 2024, 12 (04)
  • [49] Imputation Strategies for Clustering Mixed-Type Data with Missing Values
    Rabea Aschenbruck
    Gero Szepannek
    Adalbert F. X. Wilhelm
    Journal of Classification, 2023, 40 : 2 - 24
  • [50] Imputation Strategies for Clustering Mixed-Type Data with Missing Values
    Aschenbruck, Rabea
    Szepannek, Gero
    Wilhelm, Adalbert F. X.
    JOURNAL OF CLASSIFICATION, 2023, 40 (01) : 2 - 24