Imputing Missing Values for Mixed Numeric and Categorical Attributes Based on Incomplete Data Hierarchical Clustering

被引:0
|
作者
Feng, Xiaodong [1 ]
Wu, Sen [1 ]
Liu, Yanchi [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Econ & Management, Beijing 100083, Peoples R China
关键词
Mixed Numeric and Categorical Attributes; Missing Value Imputation; Hierarchical Clustering; Incomplete Set Mixed Feature Vector;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data imputation is a key issue of data pre-processing in data mining field. Though there are many methods for missing value imputation, almost each of these imputation methods has its limitation and is designed for either numeric attributes or categorical attributes. This paper presents IMIC, a new missing value Imputation method for Mixed numeric and categorical attributes based on Incomplete data hierarchical clustering after the introduction of a new concept Incomplete Set Mixed Feature Vector (ISMFV). The effect of the new method is valuated through the comparison experiment using 3 real data sets from UCI.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 50 条
  • [21] Optimization of the Numeric and Categorical Attribute Weights in KAMILA Mixed Data Clustering Algorithm
    Martarelli, Nadia Junqueira
    Nagano, Marcelo Seido
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I, 2019, 11871 : 20 - 27
  • [22] Fuzzy Centroid and Genetic Algorithms: Solutions for Numeric and Categorical Mixed Data Clustering
    Nooraeni, Rani
    Arsa, Muhamad Iqbal
    Projo, Nucke Widowati Kusumo
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 677 - 684
  • [23] A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data
    Ji, Jinchao
    Pang, Wei
    Zhou, Chunguang
    Han, Xiao
    Wang, Zhe
    KNOWLEDGE-BASED SYSTEMS, 2012, 30 : 129 - 135
  • [24] Imputing missing values for genetic interaction data
    Wang, Yishu
    Wang, Lin
    Yang, Dejie
    Deng, Minghua
    METHODS, 2014, 67 (03) : 269 - 277
  • [25] A fuzzy c-means-type algorithm for clustering of data with mixed numeric and categorical attributes employing a probabilistic dissimilarity functional
    Chatzis, Sotirios P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8684 - 8689
  • [26] Low Rank Matrix Approximation for Imputing Missing Categorical Data
    Wacira, Joseph Muthui
    Ranirina, Dinna
    Bah, Bubacarr
    ARTIFICIAL INTELLIGENCE RESEARCH, SACAIR 2021, 2022, 1551 : 242 - 256
  • [27] k-CCM: A Center-Based Algorithm for Clustering Categorical Data with Missing Values
    Dinh, Duy-Tai
    Huynh, Van-Nam
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2018), 2018, 11144 : 267 - 279
  • [28] Compressive Sensing and Hierarchical Clustering for Microarray Data with Missing Values
    Ciaramellila, Angelo
    Nardone, Davide
    Staiano, Antonino
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2018, 2020, 11925 : 3 - 10
  • [29] Summarizing categorical data by clustering attributes
    Michael Mampaey
    Jilles Vreeken
    Data Mining and Knowledge Discovery, 2013, 26 : 130 - 173
  • [30] Summarizing categorical data by clustering attributes
    Mampaey, Michael
    Vreeken, Jilles
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 26 (01) : 130 - 173