Imputing Missing Values for Mixed Numeric and Categorical Attributes Based on Incomplete Data Hierarchical Clustering

被引:0
|
作者
Feng, Xiaodong [1 ]
Wu, Sen [1 ]
Liu, Yanchi [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Econ & Management, Beijing 100083, Peoples R China
关键词
Mixed Numeric and Categorical Attributes; Missing Value Imputation; Hierarchical Clustering; Incomplete Set Mixed Feature Vector;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data imputation is a key issue of data pre-processing in data mining field. Though there are many methods for missing value imputation, almost each of these imputation methods has its limitation and is designed for either numeric attributes or categorical attributes. This paper presents IMIC, a new missing value Imputation method for Mixed numeric and categorical attributes based on Incomplete data hierarchical clustering after the introduction of a new concept Incomplete Set Mixed Feature Vector (ISMFV). The effect of the new method is valuated through the comparison experiment using 3 real data sets from UCI.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 50 条
  • [31] Fuzzy K-prototypes algorithm for clustering mixed numeric and categorical valued data
    Chen, Ning
    Chen, An
    Zhou, Long-Xiang
    Ruan Jian Xue Bao/Journal of Software, 2001, 12 (08): : 1107 - 1119
  • [32] Dynamic Clustering-Based Estimation of Missing Values in Mixed Type Data
    Ayuyev, Vadim V.
    Jupin, Joseph
    Harris, Philip W.
    Obradovic, Zoran
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2009, 5691 : 366 - +
  • [33] Splitting Method for Decision Tree Based on Similarity with Mixed Fuzzy Categorical and Numeric Attributes
    Zaim, Houda
    Ramdani, Mohammed
    Haddi, Adil
    BIG DATA, CLOUD AND APPLICATIONS, BDCA 2018, 2018, 872 : 237 - 248
  • [34] Imputing Missing Values in Microarray Data with Ontology Information
    Yang, Andy C.
    Hsu, Hui-Huang
    Lu, Ming-Da
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 535 - 540
  • [35] Model-Based Hierarchical Clustering for Categorical Data
    Alalyan, Fahdah
    Zamzami, Nuha
    Bouguila, Nizar
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1424 - 1429
  • [36] CLUSTERING CATEGORICAL DATA BASED ON COMBINATIONS OF ATTRIBUTE VALUES
    Do, Hee-Jung
    Kim, Jae Yearn
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (12A): : 4393 - 4405
  • [37] An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets
    Zhang, Kang
    Gu, Xingsheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [38] On Fuzzy Clustering for Incomplete Spherical Data and for Incomplete Multivariate Categorical Data
    Kanzawa, Yuchi
    2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2018, : 638 - 643
  • [39] Ordering of categorical data in hierarchical clustering
    Kazimianec, Michail
    DATABASES AND INFORMATION SYSTEMS, 2008, : 401 - 404
  • [40] A Weight Entropy k-means Algorithm for Clustering Dataset with Mixed Numeric and Categorical Data
    Li, Taoying
    Chen, Yan
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 36 - 41