ASYMPTOTIC SPECTRAL DISTRIBUTIONS OF DISTANCE-k GRAPHS OF CARTESIAN PRODUCT GRAPHS

被引:2
|
作者
Hibino, Yuji [1 ]
Lee, Hun Hee [2 ,3 ]
Obata, Nobuaki [4 ]
机构
[1] Saga Univ, Dept Math, Saga 8408502, Japan
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Saga Univ, Res Inst Math, Saga 8408502, Japan
[4] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
基金
新加坡国家研究基金会;
关键词
adjacency matrix; Cartesian product graph; central limit theorem; distance-k graph; Hermite polynomials; quantum probability; spectrum;
D O I
10.4064/cm132-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite connected graph on two or more vertices, and G[N,k] the distance-k graph of the N-fold Cartesian power of G. For a fixed k >= 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of G[N,k]. The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
引用
收藏
页码:35 / 51
页数:17
相关论文
共 50 条
  • [41] The rainbow connectivity of cartesian product graphs
    Chen, Xing
    Li, Xueliang
    Wang, Jianfeng
    Fan, Nannan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (06): : 901 - 914
  • [42] THE THICKNESS OF AMALGAMATIONS AND CARTESIAN PRODUCT OF GRAPHS
    Yang, Yan
    Chen, Yichao
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 561 - 572
  • [43] Extraconnectivity of Cartesian product graphs of paths
    Fu, Mingyan
    Yang, Weihua
    Meng, Jixiang
    ARS COMBINATORIA, 2010, 96 : 515 - 520
  • [44] Game Coloring the Cartesian Product of Graphs
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2008, 59 (04) : 261 - 278
  • [45] Gromov hyperbolicity in Cartesian product graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 593 - 609
  • [46] The Menger number of the Cartesian product of graphs
    Ma, Meijie
    Xu, Jun-Ming
    Zhu, Qiang
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 627 - 629
  • [47] On the security number of the Cartesian product of graphs
    Jakovac, Marko
    Otachi, Yota
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 119 - 128
  • [48] The Cover Time of Cartesian Product Graphs
    Abdullah, Mohammed
    Cooper, Colin
    Radzik, Tomasz
    COMBINATORIAL ALGORITHMS, 2011, 6460 : 377 - 389
  • [49] Betweenness centrality in Cartesian product of graphs
    Kumar, Sunil R.
    Balakrishnan, Kannan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 571 - 583
  • [50] THE DIAMETER VARIABILITY OF THE CARTESIAN PRODUCT OF GRAPHS
    Chithra, M. R.
    Vijayakumar, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)