ASYMPTOTIC SPECTRAL DISTRIBUTIONS OF DISTANCE-k GRAPHS OF CARTESIAN PRODUCT GRAPHS

被引:2
|
作者
Hibino, Yuji [1 ]
Lee, Hun Hee [2 ,3 ]
Obata, Nobuaki [4 ]
机构
[1] Saga Univ, Dept Math, Saga 8408502, Japan
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Saga Univ, Res Inst Math, Saga 8408502, Japan
[4] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
基金
新加坡国家研究基金会;
关键词
adjacency matrix; Cartesian product graph; central limit theorem; distance-k graph; Hermite polynomials; quantum probability; spectrum;
D O I
10.4064/cm132-1-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite connected graph on two or more vertices, and G[N,k] the distance-k graph of the N-fold Cartesian power of G. For a fixed k >= 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of G[N,k]. The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
引用
收藏
页码:35 / 51
页数:17
相关论文
共 50 条
  • [31] Strong resolving partitions for strong product graphs and Cartesian product graphs
    Gonzalez Yero, Ismael
    DISCRETE APPLIED MATHEMATICS, 2016, 202 : 70 - 78
  • [32] Cartesian Product Graphs and k-Tuple Total Domination
    Kazemi, Adel P.
    Pahlavsay, Behnaz
    Stones, Rebecca J.
    FILOMAT, 2018, 32 (19) : 6713 - 6731
  • [33] Rainbow k-connectivity of some Cartesian product graphs
    Zhao, Yan
    Liu, Sujuan
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC 2017), 2017, : 13 - 17
  • [34] k-FORCING NUMBER FOR THE CARTESIAN PRODUCT OF SOME GRAPHS
    Montazeri, Zeinab
    Soltankhah, Nasrin
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 89 - 97
  • [35] Total k-domination in Cartesian product of complete graphs
    Carballosa, Walter
    Wisby, Justin
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 25 - 41
  • [36] DISTANCE MAGIC CARTESIAN PRODUCTS OF GRAPHS
    Cichacz, Sylwia
    Froncek, Dalibor
    Krop, Elliot
    Raridan, Christopher
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 299 - 308
  • [37] Characterizing flag graphs and induced subgraphs of cartesian product graphs
    Peterin, I
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2004, 21 (04): : 283 - 292
  • [38] Distance Product of Graphs
    Mehta, H. S.
    Acharya, U. P.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 190 - 198
  • [39] Characterizing Flag Graphs and Induced Subgraphs of Cartesian Product Graphs
    Iztok Peterin
    Order, 2004, 21 : 283 - 292
  • [40] FACTORING CARTESIAN-PRODUCT GRAPHS
    IMRICH, W
    ZEROVNIK, J
    JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 557 - 567