Let G be a finite connected graph on two or more vertices, and G[N,k] the distance-k graph of the N-fold Cartesian power of G. For a fixed k >= 1, we obtain explicitly the large N limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of G[N,k]. The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
机构:
Graz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
Boiko, Tetiana
Cuno, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
Cuno, Johannes
Imrich, Wilfried
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
Imrich, Wilfried
论文数: 引用数:
h-index:
机构:
Lehner, Florian
van de Woestijne, Christiaan E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, AustriaGraz Univ Technol, Inst Math Strukturtheorie, Steyrergasse 30-3, A-8010 Graz, Austria
机构:
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Maribor, Slovenia