Lifting problems and transgression for non-abelian gerbes

被引:14
|
作者
Nikolaus, Thomas [1 ]
Waldorf, Konrad [1 ,2 ]
机构
[1] Univ Regensburg, Fak Math, D-93053 Regensburg, Germany
[2] Hausdorff Res Inst Math, D-53115 Bonn, Germany
关键词
Non-abelian gerbe; Non-abelian cohomology; Lie; 2-group; Transgression; Loop space; String structure; BUNDLE GERBES; DIFFERENTIAL GEOMETRY; STRING; 2-GROUP; LOOP SPACE; MODELS;
D O I
10.1016/j.aim.2013.03.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss lifting and reduction problems for bundles and gerbes in the context of a Lie 2-group. We obtain a geometrical formulation (and a new proof) for the exactness of Breen's long exact sequence in non-abelian cohomology. We use our geometrical formulation in order to define a transgression map in non-abelian cohomology. This transgression map relates the degree one non-abelian cohomology of a smooth manifold (represented by non-abelian gerbes) with the degree zero non-abelian cohomology of the free loop space (represented by principal bundles). We prove several properties for this transgression map. For instance, it reduces - in case of a Lie 2-group with a single object to the ordinary transgression in ordinary cohomology. We describe applications of our results to string manifolds: first, we obtain a new comparison theorem for different notions of string structures. Second, our transgression map establishes a direct relation between string structures and spin structures on the loop space. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 79
页数:30
相关论文
共 50 条
  • [41] General solution of the non-Abelian Gauss law and non-Abelian analogues of the Hodge decomposition
    Majumdar, P
    Sharatchandra, HS
    PHYSICAL REVIEW D, 1998, 58 (06)
  • [42] Non-abelian cohomology of abelian Anosov actions
    Katok, A
    Nitica, V
    Török, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 259 - 288
  • [43] PROJECTIVITIES BETWEEN ABELIAN AND NON-ABELIAN GROUPS
    MAINARDIS, M
    ARCHIV DER MATHEMATIK, 1991, 57 (04) : 332 - 338
  • [44] CHAOS IN ABELIAN AND NON-ABELIAN HIGGS SYSTEMS
    DEY, B
    KUMAR, CN
    SEN, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1755 - 1772
  • [45] Vortons with Abelian and non-Abelian currents and their stability
    Gianni Tallarita
    Adam Peterson
    Stefano Bolognesi
    Peter Bedford
    The European Physical Journal C, 2020, 80
  • [46] Vortons with Abelian and non-Abelian currents and their stability
    Tallarita, Gianni Y.
    Peterson, Adam
    Bolognesi, Stefano
    Bedford, Peter
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (01):
  • [47] Degeneracy between Abelian and non-Abelian strings
    Monin, Sergey
    Shifman, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (18):
  • [48] FINITE NON-ABELIAN P-GROUPS WITH COMPLEMENTARY NON-ABELIAN NORMAL DIVISORS
    ARTEMOVICH, OD
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (03): : 5 - 7
  • [49] Particles in non-Abelian gauge potentials: Landau problem and insertion of non-Abelian flux
    Estienne, B.
    Haaker, S. M.
    Schoutens, K.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [50] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101